ﻻ يوجد ملخص باللغة العربية
We experimentally realize a measurement-device-independent quantum key distribution (MDI-QKD) system based on cost-effective and commercially available hardware such as distributed feedback (DFB) lasers and field-programmable gate arrays (FPGA) that enable time-bin qubit preparation and time-tagging, and active feedback systems that allow for compensation of time-varying properties of photons after transmission through deployed fibre. We examine the performance of our system, and conclude that its design does not compromise performance. Our demonstration paves the way for MDI-QKD-based quantum networks in star-type topology that extend over more than 100 km distance.
Untrusted node networks initially implemented by measurement-device-independent quantum key distribution (MDI-QKD) protocol are a crucial step on the roadmap of the quantum Internet. Considering extensive QKD implementations of trusted node networks,
Measurement-device-independent quantum key distribution (MDIQKD) is a revolutionary protocol since it is physically immune to all attacks on the detection side. However, the protocol still keeps the strict assumptions on the source side that the four
Quantum key distribution (QKD) promises security stemming from the laws of quantum physics. QKD devices based on integrated chips not only provides miniaturization, but also enhanced performance, which is important to practical and scalable networks.
Measurement-device-independent quantum key distribution (MDI-QKD) can eliminate all detector side-channel loopholes and has shown excellent performance in long-distance secret keys sharing. Conventional security proofs, however, require additional as
Device-independent quantum key distribution aims to provide key distribution schemes whose security is based on the laws of quantum physics but which does not require any assumptions about the internal working of the quantum devices used in the proto