ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrated relay server for measurement-device-independent quantum key distribution

139   0   0.0 ( 0 )
 نشر من قبل Xiaosong Ma
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum key distribution (QKD) promises security stemming from the laws of quantum physics. QKD devices based on integrated chips not only provides miniaturization, but also enhanced performance, which is important to practical and scalable networks. Here we report the realization of a relay server for measurement-device-independent QKD based on a heterogeneous superconducting-silicon-photonic chip. Silicon waveguides and beam splitters are used for optical guidance and interference. Waveguide integrated superconducting nanowire single-photon detectors are used to detector single photons. We show Hong-Ou-Mandel interference between weak coherent states with a visibility of 48%(2%). Our system generates 733 sifted bits at about 71 dB attenuation (equivalent to 358 km standard fiber) with a quantum bit error rate of 3.5%(0.7%). The fabrication processes of our device are compatible with standard thin-film technology. Together with integrated QKD transmitters, a scalable, chip-based and cost-effective QKD network can be realized in the near future.



قيم البحث

اقرأ أيضاً

98 - Kejin Wei , Wei Li , Hao Tan 2019
Measurement-device-independent quantum key distribution (MDI-QKD) removes all detector side channels and enables secure QKD with an untrusted relay. It is suitable for building a star-type quantum access network, where the complicated and expensive m easurement devices are placed in the central untrusted relay and each user requires only a low-cost transmitter, such as an integrated photonic chip. Here, we experimentally demonstrate a 1.25 GHz silicon photonic chip-based MDI-QKD system using polarization encoding. The photonic chip transmitters integrate the necessary encoding components for a standard QKD source. We implement random modulations of polarization states and decoy intensities, and demonstrate a finite-key secret rate of 31 bps over 36 dB channel loss (or 180 km standard fiber). This key rate is higher than state-of-the-art MDI-QKD experiments. The results show that silicon photonic chip-based MDI-QKD, benefiting from miniaturization, low-cost manufacture and compatibility with CMOS microelectronics, is a promising solution for future quantum secure networks.
Untrusted node networks initially implemented by measurement-device-independent quantum key distribution (MDI-QKD) protocol are a crucial step on the roadmap of the quantum Internet. Considering extensive QKD implementations of trusted node networks, a workable upgrading tactic of existing networks toward MDI networks needs to be explicit. Here, referring to the nonstandalone (NSA) network of 5G, we propose an NSA-MDI scheme as an evolutionary selection for existing phase-encoding BB84 networks. Our solution can upgrade the BB84 networks and terminals that employ various phase-encoding schemes to immediately support MDI without hardware changes. This cost-effective upgrade effectively promotes the deployment of MDI networks as a step of untrusted node networks while taking full advantage of existing networks. In addition, the diversified demands on security and bandwidth are satisfied, and network survivability is improved.
Measurement-device-independent quantum key distribution (MDIQKD) is a revolutionary protocol since it is physically immune to all attacks on the detection side. However, the protocol still keeps the strict assumptions on the source side that the four BB84-states must be perfectly prepared to ensure security. Some protocols release part of the assumptions in the encoding system to keep the practical security, but the performances would be dramatically reduced. In this work, we present an MDIQKD protocol that requires less knowledge for the coding system while the original good properties are still retained. We have also experimentally demonstrated the protocol. The result indicates the high-performance and good security for its practical applications. Besides, its robustness and flexibility exhibit a good value for complex scenarios such as the QKD networks.
Measurement-device-independent quantum key distribution (MDI-QKD) can eliminate all detector side-channel loopholes and has shown excellent performance in long-distance secret keys sharing. Conventional security proofs, however, require additional as sumptions on sources and that can be compromised through uncharacterized side channels in practice. Here, we present a general formalism based on reference technique to prove the security of MDI-QKD against any possible sources imperfection and/or side channels. With this formalism, we investigate the asymptotic performance of single-photon sources without any extra assumptions on the state preparations. Our results highlight the importance of transmitters security.
Device-independent quantum key distribution aims to provide key distribution schemes whose security is based on the laws of quantum physics but which does not require any assumptions about the internal working of the quantum devices used in the proto col. This strong form of security, unattainable with standard schemes, is possible only when using correlations that violate a Bell inequality. We provide a general security proof valid for a large class of device-independent quantum key distribution protocols in a model in which the raw key elements are generated by causally independent measurement processes. The validity of this independence condition may be justifiable in a variety of implementations and is necessarily satisfied in a physical realization where the raw key is generated by N separate pairs of devices. Our work shows that device-independent quantum key distribution is possible with key rates comparable to those of standard schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا