ﻻ يوجد ملخص باللغة العربية
We use methods of differential astrometry to construct a small field inertial reference frame stable at the micro-arcsecond level. Such a high level of astrometric precision can be expected with the end-of-mission standard errors to be achieved with the Gaia space satellite using global astrometry. We harness Gaia measurements of field angles and look at the influence of the number of reference stars and the stars magnitude as well as astrometric systematics on the total error budget with the help of Gaia-like simulations around the Ecliptic Pole in a differential astrometric scenario. We find that the systematic errors are modeled and reliably estimated to the $mu$as level even in fields with a modest number of 37 stars with G $<$13 mag over a 0.24 sq.degs. field of view for short time scales of the order of a day with high-cadence observations such as those around the North Ecliptic Pole during the EPSL scanning mode of Gaia for a perfect instrument. The inclusion of the geometric instrument model over such short time scales accounting for large-scale calibrations requires fainter stars down to G = 14 mag without diminishing the accuracy of the reference frame. We discuss several future perspectives of utilizing this methodology over different and longer timescales.
We employ differential astrometric methods to establish a small field reference frame stable at the micro-arcsecond ($mu$as) level on short timescales using high-cadence simulated observations taken by Gaia in February 2017 of a bright star close to
As part of the data processing for Gaia Data Release~1 (Gaia DR1) a special astrometric solution was computed, the so-called auxiliary quasar solution. This gives positions for selected extragalactic objects, including radio sources in the second rea
The second release of Gaia data (Gaia DR2) contains the astrometric parameters for more than half a million quasars. This set defines a kinematically non-rotating reference frame in the optical domain referred to as the Gaia-CRF2. The Gaia-CRF2 is th
Positions and proper motions of Gaia sources are expressed in a reference frame that ideally should be non-rotating relative to distant extragalactic objects, coincident with the International Celestial Reference System (ICRS), and consistent across
We investigate the capabilities of the ESA Gaia mission for detecting and character- izing short timescale variability, from tens of seconds to a dozen hours. We assess the efficiency of the variogram analysis, for both detecting short timescale vari