ترغب بنشر مسار تعليمي؟ اضغط هنا

The Gaia reference frame for bright sources examined using VLBI observations of radio stars

59   0   0.0 ( 0 )
 نشر من قبل Lennart Lindegren
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Lennart Lindegren




اسأل ChatGPT حول البحث

Positions and proper motions of Gaia sources are expressed in a reference frame that ideally should be non-rotating relative to distant extragalactic objects, coincident with the International Celestial Reference System (ICRS), and consistent across all magnitudes. For sources fainter than 16th magnitude this is achieved thanks to Gaias direct observations of quasars. At brighter magnitudes it is difficult to validate the quality of the reference frame due to the scarcity of comparison data. This paper examines the use of VLBI observations of radio stars to determine the spin and orientation of the bright reference frame of Gaia. Simultaneous estimation of the six spin and orientation parameters makes optimal use of VLBI data and makes it possible to include even single-epoch VLBI observations in the solution. The method is applied to Gaia Data Release 2 (DR2) using published VLBI data for 41 radio stars. Results for the 26 best-fitting sources indicate that the bright reference frame of Gaia DR2 is rotating relative to the faint quasars at a rate of about 0.1 mas/yr, significant at 2-sigma level. This supports a similar conclusion based on a comparison with stellar positions in the Hipparcos frame. The accuracy is currently limited by the small number of radio sources used, by uncertainties in the Gaia DR2 proper motions, and by the astrophysical nature of the radio stars. While the origin of the indicated rotation is understood and can be avoided in future data releases, it remains important to validate the bright reference frame of Gaia by independent observations. This can be achieved using VLBI astrometry, which may require re-observing the old sample of radio stars as well as measuring new objects. The unique historical value of positional measurements is stressed and VLBI observers are urged to ensure that relevant positional information is preserved for the future.

قيم البحث

اقرأ أيضاً

85 - Zinovy Malkin 2016
A possible method for linking the optical Gaia Celestial Reference Frame (GCRF) to the VLBI-based International Celestial Reference Frame (ICRF) is to use radio stars in a manner similar to that in the linking of the Hipparcos Celestial Reference Fra me (HCRF) to ICRF. In this work, an obtainable accuracy of the orientation angles between GCRF and ICRF frames was estimated by Monte Carlo simulation. If the uncertainties in the radio star positions obtained by VLBI are in the range of 0.1-4 mas and those obtained by Gaia are in the range of 0.005-0.4 mas, the orientation angle uncertainties are 0.018-0.72 mas if 46 radio stars are used, 0.013-0.51 mas if 92 radio stars are used, and 0.010-0.41~mas if 138 radio stars are used. The general conclusion from this study is that a properly organized VLBI programme for radio star observation with a reasonable load on the VLBI network can allow for the realization of GCRF-ICRF link with an error of about 0.1 mas.
As part of the data processing for Gaia Data Release~1 (Gaia DR1) a special astrometric solution was computed, the so-called auxiliary quasar solution. This gives positions for selected extragalactic objects, including radio sources in the second rea lisation of the International Celestial Reference Frame (ICRF2) that have optical counterparts bright enough to be observed with Gaia. A subset of these positions was used to align the positional reference frame of Gaia DR1 with the ICRF2. We describe the properties of the Gaia auxiliary quasar solution for a subset of sources matched to ICRF2, and compare their optical and radio positions at the sub-mas level. Their formal standard errors are better than 0.76~milliarcsec (mas) for 50% of the sources and better than 3.35~mas for 90%. Optical magnitudes are obtained in Gaias unfiltered photometric G band. The comparison with the radio positions of the defining sources shows no systematic differences larger than a few tenths of a mas. The fraction of questionable solutions, not readily accounted for by the statistics, is less than 6%. Normalised differences have extended tails requiring case-by-case investigations for around 100 sources, but we have not seen any difference indisputably linked to an optical-radio offset in the sources.
92 - Zinovy Malkin 2016
The current state of the link problem between radio and optical celestial reference frames is considered. The main objectives of the investigations in this direction during the next few years are the preparation of a comparison and the mutual orienta tion and rotation between the optical {it Gaia} Celestial Reference Frame (GCRF) and the 3rd generation radio International Celestial Reference Frame (ICRF3), obtained from VLBI observations. Both systems, ideally, should be a realization of the ICRS (International Celestial Reference System) at micro-arcsecond level accuracy. Therefore, the link accuracy between the ICRF and GCRF should be obtained with similar error level, which is not a trivial task due to relatively large systematic and random errors in source positions at different frequency bands. In this paper, a brief overview of recent work on the GCRF--ICRF link is presented. Additional possibilities to improve the GCRF--ICRF link accuracy are discussed. The suggestion is made to use astrometric radio sources with optical magnitude to 20$^m$ rather than to 18$^m$ as currently planned for the GCRF--ICRF link. In addition, the use of radio stars is also a prospective method to obtain independent and accurate orientation between the Gaia frame and the ICRF.
We quantify and correct systematic errors in PPMXL proper motions using extragalactic sources from the first two LAMOST data releases and the Veron-Cetty & Veron Catalog of Quasars. Although the majority of the sources are from the Veron catalog, LAM OST makes important contributions in regions that are not well-sampled by previous catalogs, particularly at low Galactic latitudes and in the south Galactic cap. We show that quasars in PPMXL have measureable and significant proper motions, which reflect the systematic zero-point offsets present in the catalog. We confirm the global proper motion shifts seen by Wu, Ma, & Zhou (2011), and additionally find smaller-scale fluctuations of the QSO-derived corrections to an absolute frame. We average the proper motions of 158,106 extragalactic objects in bins of 3x3 degrees and present a table of proper motion corrections.
106 - J.F. Zhou 2000
Five compact radio sources, include 0420-014, 1334-127, 1504-166, 2243-123, and 2345-167, were observed at 5GHz by European VLBI (Very Long Baseline Interferometry) Network (EVN) in June, 1996. The primary purpose of this observation was to confirm t heir superluminal proper motions. Here, the results of 1334-127, 1504-166, 2243-123 and 2345-167 are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا