ترغب بنشر مسار تعليمي؟ اضغط هنا

Coded Caching for Combination Networks with Multiaccess

194   0   0.0 ( 0 )
 نشر من قبل Minquan Cheng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In a traditional $(H, r)$ combination network, each user is connected to a unique set of $r$ relays. However, few research efforts to consider $(H, r, u)$ multiaccess combination network problem where each $u$ users are connected to a unique set of $r$ relays. A naive strategy to obtain a coded caching scheme for $(H, r, u)$ multiaccess combination network is by $u$ times repeated application of a coded caching scheme for a traditional $(H, r)$ combination network. Obviously, the transmission load for each relay of this trivial scheme is exactly $u$ times that of the original scheme, which implies that as the number of users multiplies, the transmission load for each relay will also multiply. Therefore, it is very meaningful to design a coded caching scheme for $(H, r, u)$ multiaccess combination network with lower transmission load for each relay. In this paper, by directly applying the well known coding method (proposed by Zewail and Yener) for $(H, r)$ combination network, a coded caching scheme (ZY scheme) for $(H, r, u)$ multiaccess combination network is obtained. However, the subpacketization of this scheme has exponential order with the number of users, which leads to a high implementation complexity. In order to reduce the subpacketization, a direct construction of a coded caching scheme for $(H, r, u)$ multiaccess combination network is proposed by means of Combinational Design Theory, where the parameter $u$ must be a combinatorial number. For arbitrary parameter $u$, a hybrid construction of a coded caching scheme for $(H, r, u)$ multiaccess combination network is proposed based on our direct construction. Theoretical and numerical analysis show that our last two schemes have smaller transmission load for each relay compared with the trivial scheme, and have much lower subpacketization compared with ZY scheme.



قيم البحث

اقرأ أيضاً

Recently Hachem et al. formulated a multiaccess coded caching model which consists of a central server connected to $K$ users via an error-free shared link, and $K$ cache-nodes. Each cache-node is equipped with a local cache and each user can access $L$ neighbouring cache-nodes with a cyclic wrap-around fashion. In this paper, we take the privacy of the users demands into consideration, i.e., each user can only get its required file and can not get any information about the demands of other users. By storing some private keys at the cache-nodes, we propose a novel transformation approach to transform a non-private multiaccess coded caching scheme into a private multiaccess coded caching scheme.
In an $(H,r)$ combination network, a single content library is delivered to ${Hchoose r}$ users through deployed $H$ relays without cache memories, such that each user with local cache memories is simultaneously served by a different subset of $r$ re lays on orthogonal non-interfering and error-free channels. The combinatorial placement delivery array (CPDA in short) can be used to realize a coded caching scheme for combination networks. In this paper, a new algorithm realizing a coded caching scheme for combination network based on a CPDA is proposed such that the schemes obtained have smaller subpacketization levels or are implemented more flexible than the previously known schemes. Then we focus on directly constructing CPDAs for any positive integers $H$ and $r$ with $r<H$. This is different from the grouping method in reference (IEEE ISIT, 17-22, 2018) under the constraint that $r$ divides $H$. Consequently two classes of CPDAs are obtained. Finally comparing to the schemes and the method proposed by Yan et al., (IEEE ISIT, 17-22, 2018) the schemes realized by our CPDAs have significantly advantages on the subpacketization levels and the transmission rates.
This paper considers the multiaccess coded caching systems formulated by Hachem et al., including a central server containing $N$ files connected to $K$ cache-less users through an error-free shared link, and $K$ cache-nodes, each equipped with a cac he memory size of $M$ files. Each user has access to $L$ neighbouring cache-nodes with a cyclic wrap-around topology. The coded caching scheme proposed by Hachem et al. suffers from the case that $L$ does not divide $K$, where the needed number of transmissions (a.k.a. load) is at most four times the load expression for the case where $L$ divides $K$. Our main contribution is to propose a novel {it transformation} approach to smartly extend the schemes satisfying some conditions for the well known shared-link caching systems to the multiaccess caching systems. Then we can get many coded caching schemes with different subpacketizations for multiaccess coded caching system. These resulting schemes have the maximum local caching gain (i.e., the cached contents stored at any $L$ neighbouring cache-nodes are different such that the number of retrieval packets by each user from the connected cache-nodes is maximal) and the same coded caching gain as the original schemes. Applying the transformation approach to the well-known shared-link coded caching scheme proposed by Maddah-Ali and Niesen, we obtain a new multiaccess coded caching scheme that achieves the same load as the scheme of Hachem et al. but for any system parameters. Under the constraint of the cache placement used in this new multiaccess coded caching scheme, our delivery strategy is approximately optimal when $K$ is sufficiently large. Finally, we also show that the transmission load of the proposed scheme can be further reduced by compressing the multicast message.
In this paper, we investigate the transmission delay of cache-aided broadcast networks with user cooperation. Novel coded caching schemes are proposed for both centralized and decentralized caching settings, by efficiently exploiting time and cache r esources and creating parallel data delivery at the server and users. We derive a lower bound on the transmission delay and show that the proposed centralized coded caching scheme is emph{order-optimal} in the sense that it achieves a constant multiplicative gap within the lower bound. Our decentralized coded caching scheme is also order-optimal when each users cache size is larger than the threshold $N(1-sqrt[{K-1}]{ {1}/{(K+1)}})$ (approaching 0 as $Kto infty$), where $K$ is the total number of users and $N$ is the size of file library. Moreover, for both the centralized and decentralized caching settings, our schemes obtain an additional emph{cooperation gain} offered by user cooperation and an additional emph{parallel gain} offered by the parallel transmission among the server and users. It is shown that in order to reduce the transmission delay, the number of users parallelly sending signals should be appropriately chosen according to users cache size, and alway letting more users parallelly send information could cause high transmission delay.
In this paper, we consider the coded-caching broadcast network with user cooperation, where a server connects with multiple users and the users can cooperate with each other through a cooperation network. We propose a centralized coded caching scheme based on a new deterministic placement strategy and a parallel delivery strategy. It is shown that the new scheme optimally allocate the communication loads on the server and users, obtaining cooperation gain and parallel gain that greatly reduces the transmission delay. Furthermore, we show that the number of users who parallelly send information should decrease when the users caching size increases. In other words, letting more users parallelly send information could be harmful. Finally, we derive a constant multiplicative gap between the lower bound and upper bound on the transmission delay, which proves that our scheme is order optimal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا