ﻻ يوجد ملخص باللغة العربية
We study the impact of a free carrier reservoir on the optical properties of excitonic and trionic complexes in a MoSe$_2$ monolayer at cryogenic temperatures. By applying photodoping via a non-resonant pump laser the electron density can be controlled in our sample and in turn the exciton and trion densities can be tuned. We find a significant increase of the trion binding energy in the presence of an induced electron gas both in power- and in time-resolved photoluminescence spectra. This behaviour is reproduced within the original variational approach that takes into account both screening and phase space filling effects.
Interfacing atomically thin van der Waals semiconductors with magnetic substrates enables additional control on their intrinsic valley degree of freedom and provides a promising platform for the development of novel valleytronic devices for informati
Excitons and trions (or exciton-polarons) in transition metal dichalcogenides (TMDs) are known to decay predominantly through intravalley transitions. Electron-hole recombination across different valleys can also play a significant role in the excito
Neutral and charged excitons (trions) in atomically-thin materials offer important capabilities for photonics, from ultrafast photodetectors to highly-efficient light-emitting diodes and lasers. Recent studies of van der Waals (vdW) heterostructures
Transition metal dichalcogenide heterobilayers offer attractive opportunities to realize lattices of interacting bosons with several degrees of freedom. Such heterobilayers can feature moire patterns that modulate their electronic band structure, lea
We observe a set of three replica luminescent peaks at ~21.4 meV below the dark exciton, negative and positive dark trions (or exciton-polarons) in monolayer WSe2. The replica redshift energy matches the energy of the zone-center E-mode optical phono