ﻻ يوجد ملخص باللغة العربية
Tens of millions of new variable objects are expected to be identified in over a billion time series from the Gaia mission. Crossmatching known variable sources with those from Gaia is crucial to incorporate current knowledge, understand how these objects appear in the Gaia data, train supervised classifiers to recognise known classes, and validate the results of the Variability Processing and Analysis Coordination Unit (CU7) within the Gaia Data Analysis and Processing Consortium (DPAC). The method employed by CU7 to crossmatch variables for the first Gaia data release includes a binary classifier to take into account positional uncertainties, proper motion, targeted variability signals, and artefacts present in the early calibration of the Gaia data. Crossmatching with a classifier makes it possible to automate all those decisions which are typically made during visual inspection. The classifier can be trained with objects characterized by a variety of attributes to ensure similarity in multiple dimensions (astrometry, photometry, time-series features), with no need for a-priori transformations to compare different photometric bands, or of predictive models of the motion of objects to compare positions. Other advantages as well as some disadvantages of the method are discussed. Implementation steps from the training to the assessment of the crossmatch classifier and selection of results are described.
In astronomy, we are witnessing an enormous increase in the number of source detections, precision, and diversity of measurements. Additionally, multi-epoch data is becoming the norm, making time-series analyses an important aspect of current astrono
We present an automatic classification method for astronomical catalogs with missing data. We use Bayesian networks, a probabilistic graphical model, that allows us to perform inference to pre- dict missing values given observed data and dependency r
Context. This paper presents an overview of the photometric data that are part of the first Gaia data release. Aims. The principles of the processing and the main characteristics of the Gaia photometric data are presented. Methods. The calibration st
Gaia DR2 provides a unique all-sky catalogue of 550737 variable stars, of which 151761 are long-period variable (LPV) candidates with G variability amplitudes larger than 0.2 mag (5-95% quantile range). About one-fifth of the LPV candidates are Mira
The second Gaia data release is based on 22 months of mission data with an average of 0.9 billion individual CCD observations per day. A data volume of this size and granularity requires a robust and reliable but still flexible system to achieve the