ﻻ يوجد ملخص باللغة العربية
The effects of insulating lids on the convection beneath were investigated experimentally using rectangular convection cells in the flux Rayleigh number range $2.3times10^{9}leq Ra_F leq 1.8times10^{11}$ and cylindrical cells in the range $1.4times10^{10}leq Ra_F leq 1.2times10^{12}$ with the Prandtl number Pr fixed at 4.3. It is found that the presence of the insulating lids leads to reduction of the global heat transfer efficiency as expected, which primarily depends on the insulating area but is insensitive to the detailed insulating patterns. At the leading order level, the magnitude of temperature fluctuation in the bulk fluid is, again, found to be insensitive to the insulating pattern and mainly depends on the insulating area; while the temperature probability density function (PDF) in the bulk is essentially invariant with respect to both insulating area and the spatial pattern of the lids. The flow dynamics, on the other hand, is sensitive to both the covering area and the spatial distribution of the lids. At fixed $Ra_F$, the flow strength is found to increase with increasing insulating area so as to transfer the same amount of heat through a smaller cooling area. Moreover, for a constant insulating area, a symmetric insulating pattern results in a symmetric flow pattern, i.e. double-roll structure; whereas asymmetric insulating pattern leads to asymmetric flow, i.e. single-roll structure. It is further found that the symmetry breaking of the insulating pattern leads to a stronger flow that enhances the horizontal velocity more than the vertical one.
A series of direct numerical simulations of Rayleigh-Benard convection, the flow in a fluid layer heated from below and cooled from above, were conducted to investigate the effect of mixed insulating and conducting boundary conditions on convective f
We report an experimental study aiming to clarify the role of boundary conditions (BC) in high Rayleigh number $10^8 < {rm{Ra}} < 3 times 10^{12}$ turbulent thermal convection of cryogenic helium gas. We switch between BC closer to constant heat flux
Recently, in Zhang et al. (2020), it was found that in rapidly rotating turbulent Rayleigh-Benard convection (RBC) in slender cylindrical containers (with diameter-to-height aspect ratio $Gamma=1/2$) filled with a small-Prandtl-number fluid ($Pr appr
Results on the Prandtl-Blasius type kinetic and thermal boundary layer thicknesses in turbulent Rayleigh-Benard convection in a broad range of Prandtl numbers are presented. By solving the laminar Prandtl-Blasius boundary layer equations, we calculat
We report an experimental study of the three-dimensional spatial structure of the low frequency temperature oscillations in a cylindrical Rayleigh-B{e}nard convection cell. It is found that thermal plumes are not emitted periodically, but randomly an