ﻻ يوجد ملخص باللغة العربية
Context. Distinguishing between a signal induced by either stellar activity or a planet is currently the main challenge in radial velocity searches for low-mass exoplanets. Even when the presence of a transiting planet and hence its period are known, stellar activity can be the main barrier to measuring the correct amplitude of the radial velocity signal. Several tools are being used to help understand which signals come from stellar activity in the data. Aims. We aim to present a new tool that can be used for the purpose of identifying periodicities caused by stellar activity, and show how it can be used to track the signal-to-noise ratio (SNR) of the detection over time. The tool is based on the principle that stellar activity signals are variable and incoherent. Methods. We calculate the Bayesian general Lomb-Scargle periodogram for subsets of data and by adding one extra data point we track what happens to the presence and significance of periodicities in the data. Publicly available datasets from HARPS and HARPS-N were used for this purpose. Additionally, we analysed a synthetic dataset that we created with SOAP2.0 to simulate pure stellar activity and a mixture of stellar activity and a planet. Results. We find that this tool can easily be used to identify unstable and incoherent signals, such as those introduced by stellar activity. The SNR of the detection grows approximately as the square root of the number of data points, in the case of a stable signal. This can then be used to make decisions on whether it is useful to keep observing a specific object. The tool is relatively fast and easy to use, and thus lends itself perfectly to a quick analysis of the data.
The Lomb-Scargle periodogram is a common tool in the frequency analysis of unequally spaced data equivalent to least-squares fitting of sine waves. We give an analytic solution for the generalisation to a full sine wave fit, including an offset and w
Exoplanet detection with precise radial velocity (RV) observations is currently limited by spurious RV signals introduced by stellar activity. We show that machine learning techniques such as linear regression and neural networks can effectively remo
To date, only 18 exoplanets with radial velocity (RV) semi-amplitudes $<2$ m/s have had their masses directly constrained. The biggest obstacle to RV detection of such exoplanets is variability intrinsic to stars themselves, e.g. nuisance signals ari
The properties of inhomogeneities on the surface of active stars (i.e. dark spots and bright faculae) significantly influence the determination of the parameters of an exoplanet. The chromatic effect they have on transmission spectroscopy could affec
Robertson et al.(Reports, July 25 2014, p440-444)(1) claimed that activity-induced variability is responsible for the Doppler signal of the proposed planet candidate GJ 581d. We point out that their analysis using periodograms of residual data is inc