ﻻ يوجد ملخص باللغة العربية
The Lomb-Scargle periodogram is a common tool in the frequency analysis of unequally spaced data equivalent to least-squares fitting of sine waves. We give an analytic solution for the generalisation to a full sine wave fit, including an offset and weights ($chi^{2}$ fitting). Compared to the Lomb-Scargle periodogram, the generalisation is superior as it provides more accurate frequencies, is less susceptible to aliasing, and gives a much better determination of the spectral intensity. Only a few modifications are required for the computation and the computational effort is similar. Our approach brings together several related methods that can be found in the literature, viz. the date-compensated discrete Fourier transform, the floating-mean periodogram, and the spectral significance estimator used in the SigSpec program, for which we point out some equivalences. Furthermore, we present an algorithm that implements this generalisation for the evaluation of the Keplerian periodogram that searches for the period of the best-fitting Keplerian orbit to radial velocity data. The systematic and non-random algorithm is capable of detecting eccentric orbits, which is demonstrated by two examples and can be a useful tool in searches for the orbital periods of exoplanets.
Context. Distinguishing between a signal induced by either stellar activity or a planet is currently the main challenge in radial velocity searches for low-mass exoplanets. Even when the presence of a transiting planet and hence its period are known,
As part of the NASA-CNES agreement, the NASA Star and Exoplanet Database (NStED) serves as the official US portal for the public CoRoT data products. NStED is a general purpose archive with the aim of providing support for NASAs planet finding and ch
We present a proof of concept for a new algorithm which can be used to detect exoplanets in high contrast images. The algorithm properly combines mutliple observations acquired during different nights, taking into account the orbital motion of the pl
When the interactions of agents on a network are assumed to follow the Deffuant opinion dynamics model, the outcomes are known to depend on the structure of the underlying network. This behavior cannot be captured by existing mean-field approximation
In this paper, we use the time super-operator formalism in the 2-level Friedrichs model cite{fried} to obtain a phenomenological model of mesons decay. Our approach provides a fairly good estimation of the CP symmetry violation parameter in the case