ترغب بنشر مسار تعليمي؟ اضغط هنا

A possible framework of the Lipkin model obeying the su(n)-algebra in arbitrary fermion number. I --- The su(2)-algebras extended from the conventional fermion-pair and determination of the minimum weight states ---

102   0   0.0 ( 0 )
 نشر من قبل Yasuhiko Tsue
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The minimum weight states of the Lipkin model consisting of n single-particle levels and obeying the su(n)-algebra are investigated systematically. The basic idea is to use the su(2)-algebra which is independent of the su(n)-algebra. This idea has been already presented by the present authors in the case of the conventional Lipkin model consisting of two single-particle levels and obeying the su(2)-algebra. If following this idea, the minimum weight states are determined for any fermion number occupying appropriately n single-particle levels. Naturally, the conventional minimum weight state is included: all fermions occupy energetically the lowest single-particle level in the absence of interaction. The cases n=2, 3, 4 and 5 are discussed in rather detail.



قيم البحث

اقرأ أيضاً

83 - Y. Tsue 2017
With the aim of performing an argument supplement to the previous paper by the present authors, in this paper, a practical scheme for constructing the minimum weight states of the su(n)-Lipkin model in arbitrary fermion number is discussed. The idea comes from the following two points : (i) consideration on the property of one-fermion transfer induced by the su(n)-generators in the Lipkin model and (ii) use of the auxiliary su(2)-algebra presented by the present authors. The form obtained under the points (i) and (ii) is simple.
Standing on the results for the minimum weight states obtained in the previous paper (I), an idea how to construct the linearly independent basis is proposed for the su(n)-Lipkin model. This idea starts in setting up m independent su(2)-subalgebras i n the cases with n=2m and n=2m+1 (m=2,3,4,...). The original representation is re-formed in terms of the spherical tensors for the su(n)-generators built under the su(2)-subalgebras. Through this re-formation, the su(m)-subalgebra can be found. For constructing the linearly independent basis, not only the su(2)-algebras but also the su(m)-subalgebra play a central role. Some concrete results in the cases with n=2, 3, 4 and 5 are presented.
New boson representation of the su(2)-algebra proposed by the present authors for describing the damped and amplified oscillator is examined in the Lipkin model as one of simple many-fermion models. This boson representation is expressed in terms of two kinds of bosons with a certain positive parameter. In order to describe the case of any fermion number, third boson is introduced. Through this examination, it is concluded that this representation is well workable for the boson realization of the Lipkin model in any fermion number.
A possible form of the Lipkin model obeying the su(6)-algebra is presented. It is a natural generalization from the idea for the su(4)-algebra recently proposed by the present authors. All the relation appearing in the present form can be expressed i n terms of the spherical tensors in the su(2)-algebras. For specifying the linearly independent basis completely, twenty parameters are introduced. It is concluded that, in these parameters, the ten denote the quantum numbers coming from the eigenvalues of some hermitian operators. The five in these ten determine the minimum weight state.
85 - Futoshi Minato 2016
We study the proton-neutron RPA with an extended Lipikin-Meshkov-Glick model. We pay attention to the effect of correlated ground state and the case in which neutron and proton numbers are different. The effect of the correlated ground state are test ed on the basis of quasi-boson approximation. We obtain the result that RPA excitation energies and transition strengths are in a good agreement with the exact solution up to a certain strength of the particle-particle interaction. However, the transition strength becomes worse if we consider the case in which neutron and proton numbers are different even at a weak particle-particle interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا