ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the stellar $^{58}$Ni$(n,gamma)^{59}$Ni cross section with AMS

75   0   0.0 ( 0 )
 نشر من قبل Iris Dillmann
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The $^{58}$Ni$(n,gamma)^{59}$Ni cross section was measured with a combination of the activation technique and accelerator mass spectrometry (AMS). The neutron activations were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator using the quasi-stellar neutron spectrum at $kT=25$ keV produced by the $^7$Li($p,n$)$^7$Be reaction. The subsequent AMS measurements were carried out at the 14 MV tandem accelerator of the Maier-Leibnitz-Laboratory in Garching using the Gas-filled Analyzing Magnet System (GAMS). Three individual samples were measured, yielding a Maxwellian-averaged cross section at $kT=30$ keV of $langlesigmarangle_{30text{keV}}$= 30.4 (23)$^{syst}$(9)$^{stat}$ mbarn. This value is slightly lower than two recently published measurements using the time-of-flight (TOF) method, but agrees within the uncertainties. Our new results also resolve the large discrepancy between older TOF measurements and our previous value.

قيم البحث

اقرأ أيضاً

Background: Using the chiral (Kyushu) $g$-matrix folding model with the densities calculated with Gogny-HFB (GHFB) with the angular momentum projection (AMP), we determined the central values of matter radius and neutron skin from the central values of reaction cross sections $sigma_{rm R}({rm EXP})$ of p+$^{40,48}$Ca and p+$^{208}$Pb scattering. As for p+$^{58}$Ni scattering, $sigma_{rm R}({rm EXP})$ are available as a function of incident energy $E_{rm in}$. Aim: Our aim is to determine matter radius $r_{m}$ and skin $r_{rm skin}$ for $^{58}$Ni from the $sigma_{rm R}({rm EXP})$ of p+$^{58}$Ni scattering by using the Kyushu $g$-matrix folding model with the GHFB+AMP densities. Results: For p+$^{58}$Ni scattering, the Kyushu $g$-matrix folding model with the GHFB+AMP densities reproduces $sigma_{rm R}({rm EXP})$ in $8.8 leq E_{rm in} leq 81$MeV. For $E_{rm in}=81$MeV, we define the factor $F$ as $F=sigma_{rm R}({rm EXP})/sigma_{rm R}({rm AMP})=0.9775$. The $Fsigma_{rm R}({rm AMP})$ be much the same as the center values of $sigma_{rm R}({rm EXP})$ in $8.8 leq E_{rm in} leq 81$MeV. We then determine $r_{rm m}({rm EXP})$ from the center values of $sigma_{rm R}({rm EXP})$, using $sigma_{rm R}({rm EXP})=C r_{m}^{2}({rm EXP})$ with $C=r_{m}^{2}({rm AMP})/ (Fsigma_{rm R}({rm AMP}))$. The $r_{m}({rm EXP})$ thus obtained are averaged over $E_{rm in}$. The averaged value is $r_{m}({rm EXP})=3.697$fm. Eventually, we obtain $r_{rm skin}({rm EXP})=0.023$fm from $r_{rm m}=3.697$fm and $r_p({rm EXP})=3.685$fm of electron scattering.
60 - V. Avrigeanu 1998
Excitation functions of the $^{58}$Ni$(n,p)^{58}$Co$^{m,g}$ reactions were measured in the energy range from 2 to 15 MeV. The energy dependence of the isomeric cross-section ratio R=sigma_m/(sigma_m+sigma_g) is deduced from the measured data. The sha pe and magnitude of the R(E_n) function are described by model calculations using a consistent parameter set. Questions of the input level scheme were solved based on the accurate isomeric ratio measured at low energy region.
The cross section of the $^{62}$Ni($n,gamma$) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility n_TOF at CERN. Capture kernels of 42 resonances were analyzed up to 200~keV neutron energy and Maxwellian ave raged cross sections (MACS) from $kT=5-100$ keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at $kT=30$ keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the $^{63}$Ni($n,gamma$) reaction was measured for the first time at n_TOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on $s$-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.
The stellar (n,gamma) cross section of 40Ca at kT=25 keV has been measured with a combination of the activation technique and accelerator mass spectrometry (AMS). This combination is required when direct off-line counting of the produced activity is compromised by the long half-life and/or missing gamma-ray transitions. The neutron activations were performed at the Karlsruhe Van de Graaff accelerator using the quasistellar neutron spectrum of kT=25 keV produced by the 7Li(p,n)7Be reaction. The subsequent AMS measurements were carried out at the Vienna Environmental Research Accelerator (VERA) with a 3 MV tandem accelerator. The doubly magic 40Ca is a bottle-neck isotope in incomplete silicon burning, and its neutron capture cross section determines the amount of leakage, thus impacting on the eventual production of iron group elements. Because of its high abundance, 40Ca can also play a secondary role as neutron poison for the s-process. Previous determinations of this value at stellar energies were based on time-of-flight measurements. Our method uses an independent approach, and yields for the Maxwellian-averaged cross section at kT=30 keV a value of <sigma>30 keV= 5.73+/-0.34 mb.
64 - H. Nassar , M. Paul , I. Ahmad 2004
The 62Ni(n,gamma)63Ni(t_1/2=100+-2 yrs) reaction plays an important role in the control of the flow path of the slow neutron-capture (s-) nucleosynthesis process. We have measured for the first time the total cross section of this reaction for a quas i-Maxwellian (kT = 25 keV) neutron flux. The measurement was performed by fast-neutron activation, combined with accelerator mass spectrometry to detect directly the 63Ni product nuclei. The experimental value of 28.4+-2.8 mb, fairly consistent with a recent theoretical estimate, affects the calculated net yield of 62Ni itself and the whole distribution of nuclei with 62<A <90 produced by the weak s-process in massive stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا