ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrogen Balmer Line Broadening in Solar and Stellar Flares

87   0   0.0 ( 0 )
 نشر من قبل Adam Kowalski
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Adam F. Kowalski




اسأل ChatGPT حول البحث

The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigt profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are over-broadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a multithread model improves the agreement with the observations. We revisit the three-component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a hot spot atmosphere heated by an ultrarelativistic electron beam with reasonable filling factors: 0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.



قيم البحث

اقرأ أيضاً

103 - M. Krief , A. Feigel , D. Gazit 2016
The calculation of line widths constitutes theoretical and computational challenges in the calculation of opacities of hot dense plasmas. Opacity models use line broadening approximations that are untested at stellar interior conditions. Moreover, ca lculations of atomic spectra of the sun, indicate a large discrepancy in the K-shell line widths between several atomic codes and the OP. In this work, the atomic code STAR is used to study the sensitivity of solar opacities to line-broadening. Variations in the solar opacity profile, due to an increase of the Stark widths resulting from discrepancies with OP, are compared, in light of the solar opacity problem, with the required opacity variations of the present day sun, as imposed by helioseismic and neutrino observations. The resulting variation profile, is much larger than the discrepancy between different atomic codes, agrees qualitatively with the missing opacity profile, recovers about half of the missing opacity nearby the convection boundary and has a little effect in the internal regions. Since it is hard to estimate quantitatively the uncertainty in the Stark widths, we show that an increase of all line widths by a factor of about 100 recovers quantitatively the missing opacity. These results emphasize the possibility that photoexcitation processes are not modeled properly, and more specifically, highlight the need for a better theoretical characterization of the line broadening phenomena at stellar interior conditions and of the uncertainty due to the way it is implemented by atomic codes.
This summary reports on papers presented at the Cool Stars-16 meeting in the splinter session Solar and Stellar flares. Although many topics were discussed, the main themes were the commonality of interests, and of physics, between the solar and stel lar flare communities, and the opportunities for important new observations in the near future.
A white paper prepared for the Space Studies Board, National Academy of Sciences (USA), for its Decadal Survey of Solar and Space Physics (Heliophysics), reviewing and encouraging studies of flare physics in the chromosphere.
In the quiet regions on the solar surface, turbulent convective motions of granulation play an important role in creating small-scale magnetic structures, as well as in energy injection into the upper atmosphere. The turbulent nature of granulation c an be studied using spectral line profiles, especially line broadening, which contains information on the flow field smaller than the spatial resolution of an instrument. Moreover, the Doppler velocity gradient along a line-of-sight (LOS) causes line broadening as well. However, the quantitative relationship between velocity gradient and line broadening has not been understood well. In this study, we perform bisector analyses using the spectral profiles obtained using the Spectro-Polarimeter of the Hinode/Solar Optical Telescope to investigate the relationship of line broadening and bisector velocities with the granulation flows. The results indicate that line broadening has a positive correlation with the Doppler velocity gradients along the LOS. We found excessive line broadening in fading granules, that cannot be explained only by the LOS velocity gradient, although the velocity gradient is enhanced in the process of fading. If this excessive line broadening is attributed to small-scale turbulent motions, the averaged turbulent velocity is obtained as 0.9 km/s.
We analyze a grid of radiative hydrodynamic simulations of solar flares to study the energy balance and response of the atmosphere to nonthermal electron beam heating. The appearance of chromospheric bubbles is one of the most notable features that w e find in the simulations. These pockets of chromospheric plasma get trapped between the transition region and the lower atmosphere as it is superheated by the particle beam. The chromospheric bubbles are seen in the synthetic spectra, appearing as an additional component to Balmer line profiles with high Doppler velocities as high as 200 km/s. Their signatures are also visible in the wings of Ca II 8542A line profiles. These bubbles of chromospheric plasma are driven upward by a wave front that is induced by the shock of energy deposition, and require a specific heating rate and atmospheric location to manifest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا