ﻻ يوجد ملخص باللغة العربية
Interactions between particles can be strongly altered by their environment. We demonstrate a technique for modifying interactions between ultracold atoms by dressing the bare atomic states with light, creating an effective interaction of vastly increased range that scatters states of finite relative angular momentum at collision energies where only s-wave scattering would normally be expected. We collided two optically dressed neutral atomic Bose-Einstein condensates with equal, and opposite, momenta and observed that the usual s-wave distribution of scattered atoms was altered by the appearance of d- and g-wave contributions. This technique is expected to enable quantum simulation of exotic systems, including those predicted to support Majorana fermions.
Helium atoms in the metastable $2^3{S_{1}}$ state (He$^*$) have unique advantages for ultracold atomic experiments. However, there is no known accessible Feshbach resonance in He$^*$, which could be used to manipulate the scattering length and hence
Understanding and controlling collisions is crucial to the burgeoning field of ultracold molecules. All experiments so far have observed fast loss of molecules from the trap. However, the dominant mechanism for collisional loss is not well understood
Significant leaps in the understanding of quantum systems have been driven by the exploration of geometry, topology, dimensionality, and interactions with ultracold atomic ensembles. A system where atoms evolve while confined on an ellipsoidal surfac
Radiofrequency (RF)-dressed potentials are a promising technique for manipulating atomic mixtures, but so far little work has been undertaken to understand the collisions of atoms held within these traps. In this work, we dress a mixture of 85Rb and
We demonstrate microwave dressing on ultracold, fermionic ${}^{23}$Na${}^{40}$K ground-state molecules and observe resonant dipolar collisions with cross sections exceeding three times the $s$-wave unitarity limit. The origin of these collisions is t