ﻻ يوجد ملخص باللغة العربية
We report the discovery of a mysterious giant $H_{alpha}$ blob that is $sim 8$ kpc away from the main MaNGA target 1-24145, one component of a dry galaxy merger, identified in the first-year SDSS-IV MaNGA data. The size of the $H_{alpha}$ blob is $sim$ 3-4 kpc in radius, and the $H_{alpha}$ distribution is centrally concentrated. However, there is no optical continuum counterpart in deep broadband images reaching $sim$26.9 mag arcsec$^{-2}$ in surface brightness. We estimate that the masses of ionized and cold gases are $3.3 times 10^{5}$ $rm M_{odot}$ and $< 1.3 times 10^{9}$ $rm M_{odot}$, respectively. The emission-line ratios indicate that the $H_{alpha}$ blob is photoionized by a combination of massive young stars and AGN. Furthermore, the ionization line ratio decreases from MaNGA 1-24145 to the $H_{alpha}$ blob, suggesting that the primary ionizing source may come from MaNGA 1-24145, likely a low-activity AGN. Possible explanations of this $H_{alpha}$ blob include AGN outflow, the gas remnant being tidally or ram-pressure stripped from MaNGA 1-24145, or an extremely low surface brightness (LSB) galaxy. However, the stripping scenario is less favoured according to galaxy merger simulations and the morphology of the $H_{alpha}$ blob. With the current data, we can not distinguish whether this $H_{alpha}$ blob is ejected gas due to a past AGN outburst, or a special category of `ultra-diffuse galaxy (UDG) interacting with MaNGA 1-24145 that further induces the gas inflow to fuel the AGN in MaNGA 1-24145.
Galaxies in dense environments, such as groups and clusters, experience various processes by which galaxies gain and lose gas. Using data from the SDSS-IV MaNGA survey, we previously reported the discovery of a giant (6 -- 8 kpc in diameter) H$alpha$
Bright Ly-$alpha$ blobs (LABs) --- extended nebulae with sizes of $sim$100kpc and Ly-$alpha$ luminosities of $sim$10$^{44}$erg s$^{-1}$ --- often reside in overdensities of compact Ly-$alpha$ emitters (LAEs) that may be galaxy protoclusters. The numb
We have identified 105 galaxy pairs at z ~ 0.04 with the MaNGA integral-field spectroscopic data. The pairs have projected separations between 1 kpc and 30 kpc, and are selected to have radial velocity offsets less than 600 km/s and stellar mass rati
We study the internal radial gradients of stellar population properties within $1.5;R_{rm e}$ and analyse the impact of galaxy environment. We use a representative sample of 721 galaxies with masses ranging between $10^{9};M_{odot}$ to $10^{11.5};M_{
Chemical abundance determinations in Low-Ionization Nuclear Line Regions (LINERs) are especially complex and uncertain because the nature of the ionizing source of this kind of object is unknown. In this work, we study the oxygen abundance in relatio