ﻻ يوجد ملخص باللغة العربية
We have identified 105 galaxy pairs at z ~ 0.04 with the MaNGA integral-field spectroscopic data. The pairs have projected separations between 1 kpc and 30 kpc, and are selected to have radial velocity offsets less than 600 km/s and stellar mass ratio between 0.1 and 1. The pair fraction increases with both the physical size of the integral-field unit and the stellar mass, consistent with theoretical expectations. We provide the best-fit analytical function of the pair fraction and find that ~3% of M* galaxies are in close pairs. For both isolated galaxies and paired galaxies, active galactic nuclei (AGN) are selected using emission-line ratios and H_alpha equivalent widths measured inside apertures at a fixed physical size. We find AGNs in ~24% of the paired galaxies and binary AGNs in ~13% of the pairs. To account for the selection biases in both the pair sample and the MaNGA sample, we compare the AGN comoving volume densities with those expected from the mass- and redshift-dependent AGN fractions. We find a strong (~5x) excess of binary AGNs over random pairing and a mild (~20%) deficit of single AGNs. The binary AGN excess increases from ~2x to ~6x as the projected separation decreases from 10-30 kpc to 1-10 kpc. Our results indicate that pairing of galaxies preserves the AGN duty cycle in individual galaxies but increases the population of binary AGNs through correlated activities. We suggest tidally-induced galactic-scale shocks and AGN cross-ionization as two plausible channels to produce low-luminosity narrow-line-selected binary AGNs.
In this paper, we investigate 2727 galaxies observed by MaNGA as of June 2016 to develop spatially resolved techniques for identifying signatures of active galactic nuclei (AGN). We identify 303 AGN candidates. The additional spatial dimension impose
Ionised gas outflows driven by active galactic nuclei (AGN) are ubiquitous in high luminosity AGN with outflow speeds apparently correlated with the total bolometric luminosity of the AGN. This empirical relation and theoretical work suggest that in
Using the integral field unit (IFU) data from Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we collect a sample of 36 star forming galaxies that host galactic-scale outflows in ionized gas phase. The control sample is matched in
The MaNGA Survey (Mapping Nearby Galaxies at Apache Point Observatory) is one of three core programs in the Sloan Digital Sky Survey IV. It is obtaining integral field spectroscopy (IFS) for 10K nearby galaxies at a spectral resolution of R~2000 from
Galaxy interaction is considered a key driver of galaxy evolution and star formation (SF) history. In this paper, we present an empirical picture of the radial extent of interaction-triggered SF along the merger sequence. The samples under study are