ترغب بنشر مسار تعليمي؟ اضغط هنا

First results of the cosmic ray NUCLEON experiment

109   0   0.0 ( 0 )
 نشر من قبل Alexander D. Panov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The NUCLEON experiment was designed to study the chemical composition and energy spectra of galactic cosmic ray nuclei from protons to zinc at energies of $sim10^{11}$--$10^{15}$,eV per particle. The research was carried out with the NUCLEON scientific equipment installed on the Russian satellite Resurs-P No.,2 as an additional payload. This article presents the results for the measured nuclei spectra related to the first approximately 250 days of the scientific data collection during 2015 and 2016. The all-particle spectrum and the spectra of p, He, C, O, Ne, Mg, Si and Fe are presented. Some interesting ratios of the spectra are also presented and discussed. The experiment is now in its beginning stage and the data still have a preliminary character, but they already give numerous indications of the existence of various non-canonical phenomena in the physics of cosmic rays, which are expressed in the violation of a simple universal power law of the energy spectra. These features of the the data are briefly discussed.



قيم البحث

اقرأ أيضاً

101 - V. Grebenyuk 2018
The NUCLEON experiment is designed to measure chemical composition of cosmic rays with charges from Z=1 to 30 in an energy region from 5*10^11 to 10^15 eV. In this article the data analysis algorithm and spectra of Ni and Fe nuclei, measured in the NUCLEON experiment, are presented.
LOPES, the LOFAR prototype station, was an antenna array for cosmic-ray air showers operating from 2003 - 2013 within the KASCADE-Grande experiment. Meanwhile, the analysis is finished and the data of air-shower events measured by LOPES are available with open access in the KASCADE Cosmic Ray Data Center (KCDC). This article intends to provide a summary of the achievements, results, and lessons learned from LOPES. By digital, interferometric beamforming the detection of air showers became possible in the radio-loud environment of the Karlsruhe Institute of Technology (KIT). As a prototype experiment, LOPES tested several antenna types, array configurations and calibration techniques, and pioneered analysis methods for the reconstruction of the most important shower parameters, i.e., the arrival direction, the energy, and mass-dependent observables such as the position of the shower maximum. In addition to a review and update of previously published results, we also present new results based on end-to-end simulations including all known instrumental properties. For this, we applied the detector response to radio signals simulated with the CoREAS extension of CORSIKA, and analyzed them in the same way as measured data. Thus, we were able to study the detector performance more accurately than before, including some previously inaccessible features such as the impact of noise on the interferometric cross-correlation beam. These results led to several improvements, which are documented in this paper and can provide useful input for the design of future cosmic-ray experiments based on the digital radio-detection technique.
QUIJOTE (Q-U-I JOint TEnerife) is a new polarimeter aimed to characterize the polarization of the Cosmic Microwave Background and other Galactic and extragalactic signals at medium and large angular scales in the frequency range 10-40 GHz. The multi- frequency (10-20~GHz) instrument, mounted on the first QUIJOTE telescope, saw first light on November 2012 from the Teide Observatory (2400~m a.s.l). During 2014 the second telescope has been installed at this observatory. A second instrument at 30~GHz will be ready for commissioning at this telescope during summer 2015, and a third additional instrument at 40~GHz is now being developed. These instruments will have nominal sensitivities to detect the B-mode polarization due to the primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r=0.05.
Cosmic rays originating from extraterrestrial sources are permanently arriving at Earth atmosphere, where they produce up to billions of secondary particles. The analysis of the secondary particles reaching to the surface of the Earth may provide a v ery valuable information about the Sun activity, changes in the geomagnetic field and the atmosphere, among others. In this article, we present the first preliminary results of the analysis of the cosmic rays measured with a high resolution tracking detector, TRAGALDABAS, located at the Univ. of Santiago de Compostela, in Spain.
We report the first dark matter search results from XENON1T, a $sim$2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this ki nd. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042$pm$12) kg fiducial mass and in the [5, 40] $mathrm{keV}_{mathrm{nr}}$ energy range of interest for WIMP dark matter searches, the electronic recoil background was $(1.93 pm 0.25) times 10^{-4}$ events/(kg $times$ day $times mathrm{keV}_{mathrm{ee}}$), the lowest ever achieved in a dark matter detector. A profile likelihood analysis shows that the data is consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c${}^2$, with a minimum of 7.7 $times 10^{-47}$ cm${}^2$ for 35-GeV/c${}^2$ WIMPs at 90% confidence level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا