ﻻ يوجد ملخص باللغة العربية
QUIJOTE (Q-U-I JOint TEnerife) is a new polarimeter aimed to characterize the polarization of the Cosmic Microwave Background and other Galactic and extragalactic signals at medium and large angular scales in the frequency range 10-40 GHz. The multi-frequency (10-20~GHz) instrument, mounted on the first QUIJOTE telescope, saw first light on November 2012 from the Teide Observatory (2400~m a.s.l). During 2014 the second telescope has been installed at this observatory. A second instrument at 30~GHz will be ready for commissioning at this telescope during summer 2015, and a third additional instrument at 40~GHz is now being developed. These instruments will have nominal sensitivities to detect the B-mode polarization due to the primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r=0.05.
The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment is designed to observe the polarization of the Cosmic Microwave Background and other Galactic and extragalactic signals at medium and large angular scales in the frequency range of 10-40 GHz. The firs
We report the first dark matter search results from XENON1T, a $sim$2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this ki
QUIJOTE (Q-U-I JOint TEnerife) is an experiment designed to achieve CMB B-mode polarization detection and sensitive enough to detect a primordial gravitational-wave component if the B-mode amplitude is larger than r = 0.05. It consists in two telesco
The Quijote simulations are a set of 44,100 full N-body simulations spanning more than 7,000 cosmological models in the ${Omega_{rm m}, Omega_{rm b}, h, n_s, sigma_8, M_ u, w }$ hyperplane. At a single redshift the simulations contain more than 8.5 t
We present an overview and the first results from a large-scale pulsar timing programme that is part of the UTMOST project at the refurbished Molonglo Observatory Synthesis Radio Telescope (MOST) near Canberra, Australia. We currently observe more th