ﻻ يوجد ملخص باللغة العربية
We discuss the permutation group G of massive vacua of four-dimensional gauge theories with N=1 supersymmetry that arises upon tracing loops in the space of couplings. We concentrate on superconformal N=4 and N=2 theories with N=1 supersymmetry preserving mass deformations. The permutation group G of massive vacua is the Galois group of characteristic polynomials for the vacuum expectation values of chiral observables. We provide various techniques to effectively compute characteristic polynomials in given theories, and we deduce the existence of varying symmetry breaking patterns of the duality group depending on the gauge algebra and matter content of the theory. Our examples give rise to interesting field extensions of spaces of modular forms.
We argue that tachyon-free type I string vacua with supersymmetry breaking in the open sector at the string scale can be interpreted, via S and T-duality arguments, as metastable vacua of supersymmetric type I superstring. The dynamics of the process
We present a vast landscape of O3/O7 orientifolds that descends from the famous set of complete intersection Calabi-Yau threefolds (CICY). We give distributions of topological data relevant for phenomenology such as the orientifold-odd Hodge numbers,
We provide explicit formulas for the number of vacua of four-dimensional pure N=1 super Yang-Mills theories on a circle, with any simple gauge algebra and any choice of center and spectrum of line operators. These form a key ingredient in the semi-cl
We consider topology-changing transitions between 7-manifolds of holonomy G_2 constructed as a quotient of CY x S^1 by an antiholomorphic involution. We classify involutions for Complete Intersection CY threefolds, focussing primarily on cases withou
We construct instanton solutions describing the decay of flux compactifications of a $6d$ gauge theory by generalizing the Kaluza-Klein bubble of nothing. The surface of the bubble is described by a smooth magnetically charged solitonic brane whose a