ترغب بنشر مسار تعليمي؟ اضغط هنا

Number and phase: complementarity and joint measurement uncertainties

104   0   0.0 ( 0 )
 نشر من قبل Juha-Pekka Pellonpaa
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that number and canonical phase (of a single mode optical field) are complementary observables. We also bound the measurement uncertainty region for their approximate joint measurements.

قيم البحث

اقرأ أيضاً

We associate with k hermitian Ntimes N matrices a probability measure on R^k. It is supported on the joint numerical range of the k-tuple of matrices. We call this measure the joint numerical shadow of these matrices. Let k=2. A pair of hermitian Nti mes N matrices defines a complex Ntimes N matrix. The joint numerical range and the joint numerical shadow of the pair of hermitian matrices coincide with the numerical range and the numerical shadow, respectively, of this complex matrix. We study relationships between the dynamics of quantum maps on the set of quantum states, on one hand, and the numerical ranges, on the other hand. In particular, we show that under the identity resolution assumption on Kraus operators defining the quantum map, the dynamics shrinks numerical ranges.
In this work, we investigate the joint measurability of quantum effects and connect it to the study of free spectrahedra. Free spectrahedra typically arise as matricial relaxations of linear matrix inequalities. An example of a free spectrahedron is the matrix diamond, which is a matricial relaxation of the $ell_1$-ball. We find that joint measurability of binary POVMs is equivalent to the inclusion of the matrix diamond into the free spectrahedron defined by the effects under study. This connection allows us to use results about inclusion constants from free spectrahedra to quantify the degree of incompatibility of quantum measurements. In particular, we completely characterize the case in which the dimension is exponential in the number of measurements. Conversely, we use techniques from quantum information theory to obtain new results on spectrahedral inclusion for the matrix diamond.
Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here w e prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order $alpha$ rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.
We study the Husimi distribution of the ground state in the Dicke model of field-matter interactions to visualize the quantum phase transition, from normal to superradiant, in phase-space. We follow an exact numerical and variational analysis, withou t making use of the usual Holstein-Primakoff approximation. We find that Wehrl entropy of the Husimi distribution provides an indicator of the sharp change of symmetry trough the critical point. Additionally, we note that the zeros of the Husimi distribution characterize the Dicke model quantum phase transition.
Measurement uncertainty relations are lower bounds on the errors of any approximate joint measurement of two or more quantum observables. The aim of this paper is to provide methods to compute optimal bounds of this type. The basic method is semidefi nite programming, which we apply to arbitrary finite collections of projective observables on a finite dimensional Hilbert space. The quantification of errors is based on an arbitrary cost function, which assigns a penalty to getting result $x$ rather than y, for any pair (x,y). This induces a notion of optimal transport cost for a pair of probability distributions, and we include an appendix with a short summary of optimal transport theory as needed in our context. There are then different ways to form an overall figure of merit from the comparison of distributions. We consider three, which are related to different physical testing scenarios. The most thorough test compares the transport distances between the marginals of a joint measurement and the reference observables for every input state. Less demanding is a test just on the states for which a true value is known in the sense that the reference observable yields a definite outcome. Finally, we can measure a deviation as a single expectation value by comparing the two observables on the two parts of a maximally entangled state. All three error quantities have the property that they vanish if and only if the tested observable is equal to the reference. The theory is illustrated with some characteristic examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا