ﻻ يوجد ملخص باللغة العربية
We study the Husimi distribution of the ground state in the Dicke model of field-matter interactions to visualize the quantum phase transition, from normal to superradiant, in phase-space. We follow an exact numerical and variational analysis, without making use of the usual Holstein-Primakoff approximation. We find that Wehrl entropy of the Husimi distribution provides an indicator of the sharp change of symmetry trough the critical point. Additionally, we note that the zeros of the Husimi distribution characterize the Dicke model quantum phase transition.
The quench dynamics of many-body quantum systems may exhibit non-analyticities in the Loschmidt echo, a phenomenon known as dynamical phase transition (DPT). Despite considerable research into the underlying mechanisms behind this phenomenon, several
The Wehrl entropy is an entropy associated to the Husimi quasi-probability distribution. We discuss how it can be used to formulate entropic uncertainty relations and for a quantification of entanglement in continuous variables. We show that the Wehr
We study the behavior of bipartite entanglement at fixed von Neumann entropy. We look at the distribution of the entanglement spectrum, that is the eigenvalues of the reduced density matrix of a quantum system in a pure state. We report the presence
Given a uniform, frustration-free family of local Lindbladians defined on a quantum lattice spin system in any spatial dimension, we prove a strong exponential convergence in relative entropy of the system to equilibrium under a condition of spatial
A rigorous proof is presented of the boundedness of the entanglement entropy of a block of spins for the ground state of the one-dimensional quantum Ising model with sufficiently strong transverse field. This is proved by a refinement of the argument