ﻻ يوجد ملخص باللغة العربية
Rotation of molecules embedded in He nanodroplets is explored by a combination of fs laser-induced alignment experiments and angulon quasiparticle theory. We demonstrate that at low fluence of the fs alignment pulse, the molecule and its solvation shell can be set into coherent collective rotation lasting long enough to form revivals. With increasing fluence, however, the revivals disappear -- instead, rotational dynamics as rapid as for an isolated molecule is observed during the first few picoseconds. Classical calculations trace this phenomenon to transient decoupling of the molecule from its He shell. Our results open novel opportunities for studying non-equilibrium solute-solvent dynamics and quantum thermalization.
We show that a 450 fs nonresonant, moderately intense, linearly polarized laser pulse can induce field-free molecular axis alignment of methyliodide molecules dissolved in a helium nanodroplet. Time-resolved measurements reveal rotational dynamics mu
Iodine (I$_2$) molecules embedded in He nanodroplets are aligned by a 160 ps long laser pulse. The highest degree of alignment, occurring at the peak of the pulse and quantified by $langle cos^2 theta_{2D} rangle$, is measured as a function of the la
Dimers and trimers of carbonyl sulfide (OCS) molecules embedded in helium nanodroplets are aligned by a linearly polarized 160 ps long moderately intense laser pulse and Coulomb exploded with an intense 40 fs long probe pulse in order to determine th
Acene molecules (anthracene, tetracene, pentacene) and fullerene (C$_{60}$) are embedded in He nanodroplets (He$_N$) and probed by EUV synchrotron radiation. When resonantly exciting the He nanodroplets, the embedded molecules M are efficiently ioniz
We demonstrate the experimental realization of impulsive alignment of carbonyl sulfide (OCS) molecules at the Low Density Matter Beamline (LDM) at the free-electron laser FERMI. OCS molecules in a molecular beam were impulsively aligned using 200 fs