ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonequilibrium dynamics in the one-dimensional Fermi-Hubbard model: A comparison of the nonequilibrium Green functions approach and the density matrix renormalization group method

275   0   0.0 ( 0 )
 نشر من قبل Michael Bonitz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nonequilibrium dynamics of strongly-correlated fermions in lattice systems have attracted considerable interest in the condensed matter and ultracold atomic-gas communities. While experiments have made remarkable progress in recent years, there remains a need for the further development of theoretical tools that can account for both the nonequilibrium conditions and strong correlations. For instance, time-dependent theoretical quantum approaches based on the density matrix renormalization group (DMRG) methods have been primarily applied to one-dimensional setups. Recently, two-dimensional quantum simulations of the expansion of fermions based on nonequilibrium Green functions (NEGF) have been presented [Schluenzen et al., Phys. Rev. B 93, 035107 (2016)] that showed excellent agreement with the experiments. Here we present an extensive comparison of the NEGF approach to numerically accurate DMRG results. The results indicate that NEGF are a reliable theoretical tool for weak to intermediate coupling strengths in arbitrary dimensions and make long simulations possible. This is complementary to DMRG simulations which are particularly efficient at strong coupling.



قيم البحث

اقرأ أيضاً

The nonequilibrium variational-cluster approach is applied to study the real-time dynamics of the double occupancy in the one-dimensional Fermi-Hubbard model after different fast changes of hopping parameters. A simple reference system, consisting of isolated Hubbard dimers, is used to discuss different aspects of the numerical implementation of the approach in the general framework of nonequilibrium self-energy functional theory. Opposed to a direct solution of the Euler equation, its time derivative is found to serve as numerically tractable and stable conditional equation to fix the time-dependent variational parameters.
223 - M. Menard , C. Bourbonnais 2010
The phase diagram of the one-dimensional extended Hubbard model at half-filling is investigated by a weak coupling renormalization group method applicable beyond the usual continuum limit for the electron spectrum and coupling constants. We analyze t he influence of irrelevant momentum dependent interactions on asymptotic properties of the correlation functions and the nature of dominant phases for the lattice model under study.
We investigate the effect of the Coulomb interaction, $U_{cf}$, between the conduction and f electrons in the periodic Anderson model using the density-matrix renormalization-group algorithm. We calculate the excitation spectrum of the half-filled sy mmetric model with an emphasis on the spin and charge excitations. In the one-dimensional version of the model it is found that the spin gap is smaller than the charge gap below a certain value of $U_{cf}$ and the reversed inequality is valid for stronger $U_{cf}$. This behavior is also verified by the behavior of the spin and density correlation functions. We also perform a quantum information analysis of the model and determine the entanglement map of the f and conduction electrons. It is revealed that for a certain $U_{cf}$ the ground state is dominated by the configuration in which the conduction and f electrons are strongly entangled, and the ground state is almost a product state. For larger $U_{cf}$ the sites are occupied alternatingly dominantly by two f electrons or by two conduction electrons.
We derive a general procedure for evaluating the ${rm n}$th derivative of a time-dependent operator in the Heisenberg representation and employ this approach to calculate the zeroth to third spectral moment sum rules of the retarded electronic Greens function and self-energy for a system described by the Holstein-Hubbard model allowing for arbitrary spatial and time variation of all parameters (including spatially homogeneous electric fields and parameter quenches). For a translationally invariant (but time-dependent) Hamiltonian, we also provide sum rules in momentum space. The sum rules can be applied to various different phenomena like time-resolved angle-resolved photoemission spectroscopy and benchmarking the accuracy of numerical many-body calculations. This work also corrects some errors found in earlier work on simpler models.
Two-dimensional density-matrix renormalization group method is employed to examine the ground state phase diagram of the Hubbard model on the triangular lattice at half filling. The calculation reveals two discontinuities in the double occupancy with increasing the repulsive Hubbard interaction U at Uc1 = 7.55 t and Uc2 = 9.65 t (t being the hopping integral), indicating that there are three phases separated by first order transitions. The absence of any singularity in physical quantities for 0 < U < Uc1 implies that this phase corresponds to a metallic phase. The local spin density induced by an applied pinning magnetic field for U > Uc2 exhibits a three sublattice feature, which is compatible with the Neel ordered state realized in the strong coupling limit. For Uc1 < U < Uc2, a response to the applied pinning magnetic field is comparable to that in the metallic phase but a relatively large spin correlation length is found with neither valence bond nor chiral magnetic order, suggesting a paramagnetic nature which resembles gapless spin liquid. The calculation also finds that the pair- ing correlation function monotonically decreases with increasing U and thus the superconductivity is unlikely in the intermediate phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا