ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures : accessing spin-valley dynamics

56   0   0.0 ( 0 )
 نشر من قبل Bernhard Urbaszek
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The strong light matter interaction and the valley selective optical selection rules make monolayer (ML) MoS2 an exciting 2D material for fundamental physics and optoelectronics applications. But so far optical transition linewidths even at low temperature are typically as large as a few tens of meV and contain homogenous and inhomogeneous contributions. This prevented in-depth studies, in contrast to the better-characterized ML materials MoSe2 and WSe2. In this work we show that encapsulation of ML MoS2 in hexagonal boron nitride can efficiently suppress the inhomogeneous contribution to the exciton linewidth, as we measure in photoluminescence and reflectivity a FWHM down to 2 meV at T = 4K. This indicates that surface protection and substrate flatness are key ingredients for obtaining stable, high quality samples. Among the new possibilities offered by the well-defined optical transitions we measure the homogeneous broadening induced by the interaction with phonons in temperature dependent experiments. We uncover new information on spin and valley physics and present the rotation of valley coherence in applied magnetic fields perpendicular to the ML.

قيم البحث

اقرأ أيضاً

357 - C. Robert , M.A. Semina , F. Cadiz 2017
The optical properties of MoS2 monolayers are dominated by excitons, but for spectrally broad optical transitions in monolayers exfoliated directly onto SiO2 substrates detailed information on excited exciton states is inaccessible. Encapsulation in hexagonal boron nitride (hBN) allows approaching the homogenous exciton linewidth, but interferences in the van der Waals heterostructures make direct comparison between transitions in optical spectra with different oscillator strength more challenging. Here we reveal in reflectivity and in photoluminescence excitation spectroscopy the presence of excited states of the A-exciton in MoS2 monolayers encapsulated in hBN layers of calibrated thickness, allowing to extrapolate an exciton binding energy of about 220 meV. We theoretically reproduce the energy separations and oscillator strengths measured in reflectivity by combining the exciton resonances calculated for a screened two-dimensional Coulomb potential with transfer matrix calculations of the reflectivity for the van der Waals structure. Our analysis shows a very different evolution of the exciton oscillator strength with principal quantum number for the screened Coulomb potential as compared to the ideal two-dimensional hydrogen model.
Exciton binding energies of hundreds of meV and strong light absorption in the optical frequency range make transition metal dichalcogenides (TMDs) promising for novel optoelectronic nanodevices. In particular, atomically thin TMDs can be stacked to heterostructures enabling the design of new materials with tailored properties. The strong Coulomb interaction gives rise to interlayer excitons, where electrons and holes are spatially separated in different layers. In this work, we reveal the microscopic processes behind the formation, thermalization and decay of these fundamentally interesting and technologically relevant interlayer excitonic states. In particular, we present for the exemplary MoSe$_2$-WSe$_2$ heterostructure the interlayer exciton binding energies and wave functions as well as their time- and energy-resolved dynamics. Finally, we predict the dominant contribution of interlayer excitons to the photoluminescence of these materials.
Recent research showed that the rotational degree of freedom in stacking 2D materials yields great changes in the electronic properties. Here we focus on an often overlooked question: are twisted geometries stable and what defines their rotational en ergy landscape? Our simulations show how epitaxy theory breaks down in these systems and we explain the observed behaviour in terms of an interplay between flexural phonons and the interlayer coupling, governed by Moire superlattice. Our argument applied to the well-studied MoS$_2$/Graphene system rationalize experimental results and could serve as guidance to design twistronics devices.
Van der Waals (VdW) materials have opened new directions in the study of low dimensional magnetism. A largely unexplored arena is the intrinsic tuning of VdW magnets toward new ground-states. The chromium trihalides provided the first such example wi th a change of inter-layer magnetic coupling emerging upon exfoliation. Here, we take a different approach to engineer new ground-states, not by exfoliation, but by tuning the spin-orbit coupling (SOC) of the non-magnetic ligand atoms (Cl,Br,I). We synthesize a three-halide series, CrCl$_{3-x-y}$Br$_{x}$I$_{y}$, and map their magnetic properties as a function of Cl, Br, and I content. The resulting triangular phase diagrams unveil a frustrated regime near CrCl$_{3}$. First-principles calculations confirm that the frustration is driven by a competition between the chromium and halide SOCs. Furthermore, we reveal a field-induced change of inter-layer coupling in the bulk of CrCl$_{3-x-y}$Br$_{x}$I$_{y}$ crystals at the same field as in the exfoliation experiments.
78 - Zhixue Shu , Tai Kong 2021
Low temperature magnetization of CrI3, CrSiTe3 and CrGeTe3 single crystals were systematically studied. Based on the temperature dependence of extrapolated spontaneous magnetization from magnetic isotherms measured at different temperatures, the spin stiffness constant (D) and spin excitation gap ($Delta$) were extracted according to Blochs law. For spin stiffness, D is estimated to be 27${pm}$6 meV $r{A}^2$, 20${pm}$3 meV $r{A}^2$ and 38${pm}$7 meV $r{A}^2$ for CrI3, CrSiTe3 and CrGeTe3 respectively. Spin excitation gaps determined via Blochs formulation have larger error bars yielding 0.59${pm}$0.34 meV (CrI3), 0.37${pm}$0.22 meV (CrSiTe3) and 0.28${pm}$0.19 meV (CrGeTe3). Among all three studied compounds, larger spin stiffness value leads to higher ferromagnetic transition temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا