ترغب بنشر مسار تعليمي؟ اضغط هنا

Up and down quark masses and corrections to Dashens theorem from lattice QCD and quenched QED

135   0   0.0 ( 0 )
 نشر من قبل Lukas Varnhorst
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a determination of the corrections to Dashens theorem and of the individual up and down quark masses from a lattice calculation based on quenched QED and $N_f=2+1$ QCD simulations with 5 lattice spacings down to 0.054 fm. The simulations feature lattice sizes up to 6 fm and average up-down quark masses all the way down to their physical value. For the parameter which quantifies violations to Dashenss theorem we obtain $epsilon=0.73(2)(5)(17)$, where the first error is statistical, the second is systematic, and the third is an estimate of the QED quenching error. For the light quark masses we obtain, $m_u=2.27(6)(5)(4) , MeV$ and $m_d=4.67(6)(5)(4) , MeV$ in the $overline{MS}$ scheme at $2 , GeV$ and the isospin breaking ratios $m_u/m_d=0.485(11)(8)(14)$, $R=38.2(1.1)(0.8)(1.4)$ and $Q=23.4(0.4)(0.3)(0.4)$. Our results exclude the $m_u=0$ solution to the strong CP problem by more than 24 standard deviations.



قيم البحث

اقرأ أيضاً

362 - Z. Fodor , C. Hoelbling , S. Krieg 2016
In a previous letter (arXiv:1306.2287) we determined the isospin mass splittings of the baryon octet from a lattice calculation based on quenched QED and $N_f{=}2{+}1$ QCD simulations with 5 lattice spacings down to $0.054~mathrm{fm}$, lattice sizes up to $6~mathrm{fm}$ and average up-down quark masses all the way down to their physical value. Using the same data we determine here the corrections to Dashens theorem and the individual up and down quark masses. For the parameter which quantifies violations to Dashenss theorem, we obtain $epsilon=0.73(2)(5)(17)$, where the first error is statistical, the second is systematic, and the third is an estimate of the QED quenching error. For the light quark masses we obtain, $m_u=2.27(6)(5)(4)~mathrm{MeV}$ and $m_d=4.67(6)(5)(4)~mathrm{MeV}$ in the $bar{mathrm{MS}}$ scheme at $2~mathrm{GeV}$ and the isospin breaking ratios $m_u/m_d=0.485(11)(8)(14)$, $R=38.2(1.1)(0.8)(1.4)$ and $Q=23.4(0.4)(0.3)(0.4)$. Our results exclude the $m_u=0$ solution to the strong CP problem by more than $24$ standard deviations.
We calculate the up-, down-, strange-, charm-, and bottom-quark masses using the MILC highly improved staggered-quark ensembles with four flavors of dynamical quarks. We use ensembles at six lattice spacings ranging from $aapprox0.15$~fm to $0.03$~fm and with both physical and unphysical values of the two light and the strange sea-quark masses. We use a new method based on heavy-quark effective theory (HQET) to extract quark masses from heavy-light pseudoscalar meson masses. Combining our analysis with our separate determination of ratios of light-quark masses we present masses of the up, down, strange, charm, and bottom quarks. Our results for the $overline{text{MS}}$-renormalized masses are $m_u(2~text{GeV}) = 2.130(41)$~MeV, $m_d(2~text{GeV}) = 4.675(56)$~MeV, $m_s(2~text{GeV}) = 92.47(69)$~MeV, $m_c(3~text{GeV}) = 983.7(5.6)$~MeV, and $m_c(m_c) = 1273(10)$~MeV, with four active flavors; and $m_b(m_b) = 4195(14)$~MeV with five active flavors. We also obtain ratios of quark masses $m_c/m_s = 11.783(25)$, $m_b/m_s = 53.94(12)$, and $m_b/m_c = 4.578(8)$. The result for $m_c$ matches the precision of the most precise calculation to date, and the other masses and all quoted ratios are the most precise to date. Moreover, these results are the first with a perturbative accuracy of $alpha_s^4$. As byproducts of our method, we obtain the matrix elements of HQET operators with dimension 4 and 5: $overline{Lambda}_text{MRS}=555(31)$~MeV in the minimal renormalon-subtracted (MRS) scheme, $mu_pi^2 = 0.05(22)~text{GeV}^2$, and $mu_G^2(m_b)=0.38(2)~text{GeV}^2$. The MRS scheme [Phys. Rev. D97, 034503 (2018), arXiv:1712.04983 [hep-ph]] is the key new aspect of our method.
We present details of simulations for the light hadron spectrum in quenched QCD carried out on the CP-PACS parallel computer. Simulations are made with the Wilson quark action and the plaquette gauge action on 32^3x56 - 64^3x112 lattices at four latt ice spacings (a approx 0.1-0.05 fm) and the spatial extent of 3 fm. Hadronic observables are calculated at five quark masses (m_{PS}/m_V approx 0.75 - 0.4), assuming the u and d quarks being degenerate but treating the s quark separately. We find that the presence of quenched chiral singularities is supported from an analysis of the pseudoscalar meson data. We take m_pi, m_rho and m_K (or m_phi) as input. After chiral and continuum extrapolations, the agreement of the calculated mass spectrum with experiment is at a 10% level. In comparison with the statistical accuracy of 1-3% and systematic errors of at most 1.7% we have achieved, this demonstrates a failure of the quenched approximation for the hadron spectrum: the meson hyperfine splitting is too small, and the octet masses and the decuplet mass splittings are both smaller than experiment. Light quark masses are calculated using two definitions: the conventional one and the one based on the axial-vector Ward identity. The two results converge toward the continuum limit, yielding m_{ud}=4.29(14)^{+0.51}_{-0.79} MeV. The s quark mass depends on the strange hadron mass chosen for input: m_s = 113.8(2.3)^{+5.8}_{-2.9} MeV from m_K and m_s = 142.3(5.8)^{+22.0}_{-0} MeV from m_phi, indicating again a failure of the quenched approximation. We obtain Lambda_{bar{MS}}^{(0)}= 219.5(5.4) MeV. An O(10%) deviation from experiment is observed in the pseudoscalar meson decay constants.
The QCD up- and down-quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector current divergences. In the QCD sector this correlator is known to five loop order in perturbative QCD (PQCD ), together with non-perturbative corrections from the quark and gluon condensates. This FESR is designed to reduce considerably the systematic uncertainties arising from the hadronic spectral function. The determination is done in the framework of both fixed order and contour improved perturbation theory. Results from the latter, involving far less systematic uncertainties, are: $bar{m}_u (2, mbox{GeV}) = (2.6 , pm , 0.4) , {mbox{MeV}}$, $bar{m}_d (2, mbox{GeV}) = (5.3 , pm , 0.4) , {mbox{MeV}}$, and the sum $bar{m}_{ud} equiv (bar{m}_u , + , bar{m}_d)/2$, is $bar{m}_{ud}({ 2 ,mbox{GeV}}) =( 3.9 , pm , 0.3 ,) {mbox{MeV}}$.
We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 + 1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210 - 450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI-MOM method. The results for the quark masses converted to the bar{MS} scheme are: mud(2 GeV) = 3.70(17) MeV, ms(2 GeV) = 99.6(4.3) MeV and mc(mc) = 1.348(46) GeV. We obtain also the quark mass ratios ms/mud = 26.66(32) and mc/ms = 11.62(16). By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate mu/md = 0.470(56), leading to mu = 2.36(24) MeV and md = 5.03(26) MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا