ﻻ يوجد ملخص باللغة العربية
The RNiO$_3$ perovskites are known to order antiferromagnetically below a material-dependent Neel temperature $T_text{N}$. We report experimental evidence indicating the existence of a second magnetically-ordered phase in TlNiO$_3$ above $T_text{N} = 104$ K, obtained using nuclear magnetic resonance and muon spin rotation spectroscopy. The new phase, which persists up to a temperature $T_text{N}^* = 202$ K, is suppressed by the application of an external magnetic field of approximately 1 T. It is not yet known if such a phase also exists in other perovskite nickelates.
We investigated the magnetic phase of the perovskite CaCrO$_3$ by using the muon spin relaxation technique accompanied by susceptibility measurements. A thermal hysteresis loop is identified with a width of about 1 K at the transition temperature. Wi
Magnetic ordering phenomena have a profound influence on the macroscopic properties of correlated-electron materials, but their realistic prediction remains a formidable challenge. An archetypical example is the ternary nickel oxide system RNiO3 (R =
Selenium and tellurium are among the few elements that form $AB$O$_3$ perovskite structures with a four valent ion in the $A$ site. This leads to highly distorted structures and unusual magnetic behavior. Here we investigate the Co and Ni selenite an
CaCu$_3$Fe$_4$O$_{12}$ exhibits a temperature-induced transition from a ferrimagnetic-insulating phase, in which Fe appears charge disproportionated, as Fe$^{3+}$ and Fe$^{5+}$, to a paramagnetic-metallic phase at temperatures above 210 K, with Fe$^{
Recent theoretical studies [Chen et al., Phys. Rev. B 82, 174440 (2010), Ishizuka et al., Phys. Rev. B 90, 184422 (2014)] for the magnetic Mott insulator Ba2NaOsO6 have proposed a low-temperature order parameter that breaks lattice rotational symmetr