ﻻ يوجد ملخص باللغة العربية
Over the past few years, the multi-armed bandit model has become increasingly popular in the machine learning community, partly because of applications including online content optimization. This paper reviews two different sequential learning tasks that have been considered in the bandit literature ; they can be formulated as (sequentially) learning which distribution has the highest mean among a set of distributions, with some constraints on the learning process. For both of them (regret minimization and best arm identification) we present recent, asymptotically optimal algorithms. We compare the behaviors of the sampling rule of each algorithm as well as the complexity terms associated to each problem.
Here we propose using the successor representation (SR) to accelerate learning in a constructive knowledge system based on general value functions (GVFs). In real-world settings like robotics for unstructured and dynamic environments, it is infeasibl
Though learning has become a core technology of modern information processing, there is now ample evidence that it can lead to biased, unsafe, and prejudiced solutions. The need to impose requirements on learning is therefore paramount, especially as
This paper deals with bandit online learning problems involving feedback of unknown delay that can emerge in multi-armed bandit (MAB) and bandit convex optimization (BCO) settings. MAB and BCO require only values of the objective function involved th
A standard assumption in contextual multi-arm bandit is that the true context is perfectly known before arm selection. Nonetheless, in many practical applications (e.g., cloud resource management), prior to arm selection, the context information can
In this paper we propose a new method to learn the underlying acyclic mixed graph of a linear non-Gaussian structural equation model given observational data. We build on an algorithm proposed by Wang and Drton, and we show that one can augment the h