ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged hydrophobic colloids at an oil/aqueous phase interface

115   0   0.0 ( 0 )
 نشر من قبل Colm Kelleher
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hydrophobic PMMA colloidal particles, when dispersed in oil with a relatively high dielectric constant, can become highly charged. In the presence of an interface with a conducting aqueous phase, image charge effects lead to strong binding of colloidal particles to the interface, even though the particles are wetted very little by the aqueous phase. In this paper, we study both the behavior of individual colloidal particles as they approach the interface, and the interactions between particles that are already interfacially bound. We demonstrate that using particles which are minimally wetted by the aqueous phase allows us to isolate and study those interactions which are due solely to charging of the particle surface in oil. Finally, we show that these interactions can be understood by a simple image-charge model in which the particle charge $q$ is the sole fitting parameter.



قيم البحث

اقرأ أيضاً

We investigated the spontaneous deformation and fission of a tetradecane droplet containing palmitic acid (PA) on a stearyltrimethylammonium chloride (STAC) aqueous solution. In this system, the generation and rupture of the gel layer composed of PA and STAC induce the droplet deformation and fission.To investigate the characteristics of the droplet-fission dynamics, we obtained the time series of the number of the droplets, and confirmed that the number has a peak at a certain STAC concentration. Since the fission of the droplet should be led by the deformation, we analyzed four parameters which may relate to the fission dynamics from the spatio-temporal correlation of the droplet-boundary velocity. As a result, we found that the faster deformation would be the key factor for the fission dynamics.
114 - Kai Kratzer , Axel Arnold 2014
We report simulations on the homogeneous liquid-fcc nucleation of charged colloids for both low and high contact energy values. As a precursor for crystal formation, we observe increased local order at the position where the crystal will form, but no correlations with the local density. Thus, the nucleation is driven by order fluctuations rather than density fluctuations. Our results also show that the transition involves two stages in both cases, first a transition liquid-bcc, followed by a bcc-hcp/fcc transition. Both transitions have to overcome free energy barriers, so that a spherical bcc-like cluster is formed first, in which the final fcc-like structure is nucleated mainly at the surface of the crystallite. This means that the bcc-fcc phase transition is a heterogeneous nucleation, even though we start from a homogeneous bulk liquid. The height of the bcc-hcp/fcc free energy barrier strongly depends on the contact energies of the colloids. For low contact energy this barrier is low, so that the bcc-hcp/fcc transition happens spontaneously. For the higher contact energy, the second barrier is too high to be crossed spontaneously by the colloidal system. However, it was possible to ratchet the system over the second barrier and to transform the bcc nuclei into the stable hcp/fcc phase. The transitions are dominated by the first liquid-bcc transition and can be described by Classical Nucleation Theory using an effective surface tension.
We simulate colloids (radius $R sim 1mu$m) trapped at the interface between a cholesteric liquid crystal and an immiscible oil, at which the helical order (pitch p) in the bulk conflicts with the orientation induced at the interface, stabilizing an o rdered array of disclinations. For weak anchoring strength W of the director field at the colloidal surface, this creates a template, favoring particle positions eitheron top of or midway between defect lines, depending on $alpha = R/p$. For small $alpha$, optical microscopy experiments confirm this picture, but for larger $alpha$ no templating is seen. This may stem from the emergence at moderate W of a rugged energy landscape associated with defect reconnections.
The behavior of proteins near interfaces is relevant for biological and medical purposes. Previous results in bulk show that, when the protein concentration increases, the proteins unfold and, at higher concentrations, aggregate. Here, we study how t he presence of a hydrophobic surface affects this course of events. To this goal, we use a coarse-grained model of proteins and study by simulations their folding and aggregation near an ideal hydrophobic surface in an aqueous environment by changing parameters such as temperature and hydrophobic strength, related, e.g., to ions concentration. We show that the hydrophobic surface, as well as the other parameters, affect both the protein unfolding and aggregation. We discuss the interpretation of these results and define future lines for further analysis, with their possible implications in neurodegenerative diseases.
Interface localization-delocalization transitions (ILDT) occur in two-phase fluids confined in a slit with competing preferences of the walls for the two fluid phases. At low temperatures the interface between the two phases is localized at one of th e walls. Upon increasing temperature it unbinds. Although intensively studied theoretically and computationally, such transitions have not yet been observed experimentally due to severe challenges in resolving fine details of the fluid structure. Here, using mean field theory and Monte Carlo simulations of the Ising model, we propose to detect these ILDT by using colloids. We show that the finite-size and fluctuation induced force acting on a colloid confined in such a system experiences a vivid change if, upon lowering the temperature, the interface localizes at one of the walls. This change can serve as a more easily accessible experimental indicator of the transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا