ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Crystalline Materials - General Formulation, Module Structure, and Wallpaper Groups -

101   0   0.0 ( 0 )
 نشر من قبل Ken Shiozaki
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We formulate topological crystalline materials on the basis of the twisted equivariant $K$-theory. Basic ideas of the twisted equivariant $K$-theory is explained with application to topological phases protected by crystalline symmetries in mind, and systematic methods of topological classification for crystalline materials are presented. Our formulation is applicable to bulk gapful topological crystalline insulators/superconductors and their gapless boundary and defect states, as well as bulk gapless topological materials such as Weyl and Dirac semimetals, and nodal superconductors. As an application of our formulation, we present a complete classification of topological crystalline surface states, in the absence of time-reversal invariance. The classification works for gapless surface states of three-dimensional insulators, as well as full gapped two-dimensional insulators. Such surface states and two-dimensional insulators are classified in a unified way by 17 wallpaper groups, together with the presence or the absence of (sublattice) chiral symmetry. We identify the topological numbers and their representations under the wallpaper group operation. We also exemplify the usefulness of our formulation in the classification of bulk gapless phases. We present a new class of Weyl semimetals and Weyl superconductors that are topologically protected by inversion symmetry.



قيم البحث

اقرأ أيضاً

We present a method for efficiently enumerating all allowed, topologically distinct, electronic band structures within a given crystal structure. The algorithm applies to crystals with broken time-reversal, particle-hole, and chiral symmetries in any dimension. The presented results match the mathematical structure underlying the topological classification of these crystals in terms of K-theory, and therefore elucidate this abstract mathematical framework from a simple combinatorial perspective. Using a straightforward counting procedure, we classify the allowed topological phases in any possible two-dimensional crystal in class A. We also show how the same procedure can be used to classify the allowed phases for any three-dimensional space group. Employing these classifications, we study transitions between topological phases within class A that are driven by band
We identify four types of higher-order topological semimetals or nodal superconductors (HOTS), hosting (i) flat zero-energy Fermi arcs at crystal hinges, (ii) flat zero-energy hinge arcs coexisting with surface Dirac cones, (iii) chiral or helical hi nge modes, or (iv) flat zero-energy hinge arcs connecting nodes only at finite momentum. Bulk-boundary correspondence relates the hinge states to the bulk topology protecting the nodal point or loop. We classify all HOTS for all tenfold-way classes with an order-two crystalline (anti-)symmetry, such as mirror, twofold rotation, or inversion.
Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topolo gical crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and thus to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak antilocalization and the weak links of the SQUID fully-gapped proximity induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2$pi$ periodicity, possibly dominated by the bulk conductivity.
112 - Ken Shiozaki 2019
We present the exhaustive classification of surface states of topological insulators and superconductors protected by crystallographic magnetic point group symmetry in three spatial dimensions. Recently, Cornfeld and Chapman [Phys. Rev. B {bf 99}, 07 5105 (2019)] pointed out that the topological classification of mass terms of the Dirac Hamiltonian with point group symmetry is recast as the extension problem of the Clifford algebra, and we use their results extensively. Comparing two-types of Dirac Hamiltonians with and without the mass-hedgehog potential, we establish the irreducible character formula to read off which Hamiltonian in the whole $K$-group belongs to fourth-order topological phases, which are atomic insulators localized at the center of the point group.
The Hofstadter problem is the lattice analog of the quantum Hall effect and is the paradigmatic example of topology induced by an applied magnetic field. Conventionally, the Hofstadter problem involves adding $sim 10^4$ T magnetic fields to a trivial band structure. In this work, we show that when a magnetic field is added to an initially topological band structure, a wealth of remarkable possible phases emerges. Remarkably, we find topological phases which cannot be realized in any crystalline insulators. We prove that threading magnetic flux through a Hamiltonian with nonzero Chern number enforces a phase transition at fixed filling and that a 2D Hamiltonian with nontrivial Kane-Mele invariant produces a 3D TI or 3D weak TI phase in periodic flux. We then study fragile topology protected by the product of two-fold rotation and time-reversal and show that there exists a 3D higher order TI phase where corner modes are pumped by flux. We show that a model of twisted bilayer graphene realizes this phase. Our results rely primarily on the magnetic translation group which exists at rational values of the flux. The advent of Moire lattices also renders our work relevant experimentally. In Moire lattices, it is possible for fields of order $1-30$ T to reach one flux per plaquette and allow access to our proposed Hofstadter topological phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا