ﻻ يوجد ملخص باللغة العربية
We study colorings of the hyperbolic plane, analogously to the Hadwiger-Nelson problem for the Euclidean plane. The idea is to color points using the minimum number of colors such that no two points at distance exactly $d$ are of the same color. The problem depends on $d$ and, following a strategy of Kloeckner, we show linear upper bounds on the necessary number of colors. In parallel, we study the same problem on $q$-regular trees and show analogous results. For both settings, we also consider a variant which consists in replacing $d$ with an interval of distances.
Consider the graph $mathbb{H}(d)$ whose vertex set is the hyperbolic plane, where two points are connected with an edge when their distance is equal to some $d>0$. Asking for the chromatic number of this graph is the hyperbolic analogue to the famous
A semi-regular tiling of the hyperbolic plane is a tessellation by regular geodesic polygons with the property that each vertex has the same vertex-type, which is a cyclic tuple of integers that determine the number of sides of the polygons surroundi
For graph $G$ and integers $a_1 ge cdots ge a_r ge 2$, we write $G rightarrow (a_1 ,cdots ,a_r)^v$ if and only if for every $r$-coloring of the vertex set $V(G)$ there exists a monochromatic $K_{a_i}$ in $G$ for some color $i in {1, cdots, r}$. The v
The total dominator total coloring of a graph is a total coloring of the graph such that each object of the graph is adjacent or incident to every object of some color class. The minimum namber of the color classes of a total dominator total coloring
Let $G=(V(G), E(G))$ be a multigraph with maximum degree $Delta(G)$, chromatic index $chi(G)$ and total chromatic number $chi(G)$. The Total Coloring conjecture proposed by Behzad and Vizing, independently, states that $chi(G)leq Delta(G)+mu(G) +1$ f