ﻻ يوجد ملخص باللغة العربية
For graph $G$ and integers $a_1 ge cdots ge a_r ge 2$, we write $G rightarrow (a_1 ,cdots ,a_r)^v$ if and only if for every $r$-coloring of the vertex set $V(G)$ there exists a monochromatic $K_{a_i}$ in $G$ for some color $i in {1, cdots, r}$. The vertex Folkman number $F_v(a_1 ,cdots ,a_r; s)$ is defined as the smallest integer $n$ for which there exists a $K_s$-free graph $G$ of order $n$ such that $G rightarrow (a_1 ,cdots ,a_r)^v$. It is well known that if $G rightarrow (a_1 ,cdots ,a_r)^v$ then $chi(G) geq m$, where $m = 1+ sum_{i=1}^r (a_i - 1)$. In this paper we study such Folkman graphs $G$ with chromatic number $chi(G)=m$, which leads to a new concept of chromatic Folkman numbers. We prove constructively some existential results, among others that for all $r,s ge 2$ there exist $K_{s+1}$-free graphs $G$ such that $G rightarrow (s,cdots_r,s)^v$ and $G$ has the smallest possible chromatic number $r(s-1)+1$ for this $r$-color arrowing to hold. We also conjecture that, in some cases, our construction is the best possible, in particular that for every $s ge 2$ there exists a $K_{s+1}$-free graph $G$ on $F_v(s,s; s+1)$ vertices with $chi(G)=2s-1$ such that $G rightarrow (s,s)^v$.
We give a new recurrent inequality on a class of vertex Folkman numbers.
The total dominator total coloring of a graph is a total coloring of the graph such that each object of the graph is adjacent or incident to every object of some color class. The minimum namber of the color classes of a total dominator total coloring
We study colorings of the hyperbolic plane, analogously to the Hadwiger-Nelson problem for the Euclidean plane. The idea is to color points using the minimum number of colors such that no two points at distance exactly $d$ are of the same color. The
Let $G=(V(G), E(G))$ be a multigraph with maximum degree $Delta(G)$, chromatic index $chi(G)$ and total chromatic number $chi(G)$. The Total Coloring conjecture proposed by Behzad and Vizing, independently, states that $chi(G)leq Delta(G)+mu(G) +1$ f