ﻻ يوجد ملخص باللغة العربية
This paper aims to maximize optical force and torque on arbitrary micro- and nano-scale objects using numerically optimized structured illumination. By developing a numerical framework for computer-automated design of 3d vector-field illumination, we demonstrate a 20-fold enhancement in optical torque per intensity over circularly polarized plane wave on a model plasmonic particle. The nonconvex optimization is efficiently performed by combining a compact cylindrical Bessel basis representation with a fast boundary element method and a standard derivative-free, local optimization algorithm. We analyze the optimization results for 2000 random initial configurations, discuss the tradeoff between robustness and enhancement, and compare the different effects of multipolar plasmon resonances on enhancing force and torque. All results are obtained using open-source computational software available online.
Due to their unique ability to maintain an intensity distribution upon propagation, non-diffracting light fields are used extensively in various areas of science, including optical tweezers, nonlinear optics and quantum optics, in applications where
Two formulations of the Lorentz law of force in classical electrodynamics yield identical results for the total force (and total torque) of radiation on a solid object. The object may be surrounded by the free space or immersed in a transparent diele
Expanded porphyrin-based (Hexaphyrins) sensitizers are promising due to their excellent light harvesting feature in dye-sensitized solar cell (DSSC). We calculated the low-lying excitations of expanded porphyrins (EPs) as hexaphyrin and core modified
A key element in the generation of optical torque in optical traps, which occurs when electromagnetic angular momentum is transferred from the trapping beam to the trapped particle by scattering, is the symmetries of the scattering particle and the t
We show that a system of three trapped ultracold and strongly interacting atoms in one-dimension can be emulated using an optical fiber with a graded-index profile and thin metallic slabs. While the wave-nature of single quantum particles leads to di