ترغب بنشر مسار تعليمي؟ اضغط هنا

Ballistic, diffusive, and arrested transport in disordered momentum-space lattices

337   0   0.0 ( 0 )
 نشر من قبل Fangzhao An
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultracold atoms in optical lattices offer a unique platform for investigating disorder-driven phenomena. While static disordered site potentials have been explored in a number of optical lattice experiments, a more general control over site-energy and off-diagonal tunneling disorder has been lacking. The use of atomic quantum states as synthetic dimensions has introduced the spectroscopic, site-resolved control necessary to engineer new, more tailored realizations of disorder. Here, by controlling laser-driven dynamics of atomic population in a momentum-space lattice, we extend the range of synthetic-dimension-based quantum simulation and present the first explorations of dynamical disorder and tunneling disorder in an atomic system. By applying static tunneling phase disorder to a one-dimensional lattice, we observe ballistic quantum spreading as in the case of uniform tunneling. When the applied disorder fluctuates on timescales comparable to intersite tunneling, we instead observe diffusive atomic transport, signaling a crossover from quantum to classical expansion dynamics. We compare these observations to the case of static site-energy disorder, where we directly observe quantum localization in the momentum-space lattice.



قيم البحث

اقرأ أيضاً

We study the influence of atomic interactions on quantum simulations in momentum-space lattices (MSLs), where driven atomic transitions between discrete momentum states mimic transport between sites of a synthetic lattice. Low energy atomic collision s, which are short ranged in real space, relate to nearly infinite-ranged interactions in momentum space. However, the distinguishability of the discrete momentum states coupled in MSLs gives rise to an added exchange energy between condensate atoms in different momentum orders, relating to an effectively attractive, finite-ranged interaction in momentum space. We explore the types of phenomena that can result from this interaction, including the formation of chiral self-bound states in topological MSLs. We also discuss the prospects for creating squeezed states in momentum-space double wells.
This paper presents an analytical study of the coexistence of different transport regimes in quasi-one-dimensional surface-disordered waveguides (or electron conductors). To elucidate main features of surface scattering, the case of two open modes (c hannels) is considered in great detail. Main attention is paid to the transmission in dependence on various parameters of the model with two types of rough-surface profiles (symmetric and antisymmetric). It is shown that depending on the symmetry, basic mechanisms of scattering can be either enhanced or suppressed. As a consequence, different transport regimes can be realized. Specifically, in the waveguide with symmetric rough boundaries, there are ballistic, localized and coexistence transport regimes. In the waveguide with antisymmetric roughness of lateral walls, another regime of the diffusive transport can arise. Our study allows to reveal the role of the so-called square-gradient scattering which is typically neglected in literature, however, can give a strong impact to the transmission.
121 - V. W. Scarola , B. DeMarco 2015
Quantum degenerate gases trapped in optical lattices are ideal testbeds for fundamental physics because these systems are tunable, well characterized, and isolated from the environment. Controlled disorder can be introduced to explore suppression of quantum diffusion in the absence of conventional dephasing mechanisms such as phonons, which are unavoidable in experiments on electronic solids. Recent experiments use transport of degenerate Fermi gases in optical lattices (Kondov et al. Phys. Rev. Lett. 114, 083002 (2015)) to probe a particularly extreme regime of strong interaction in what can be modeled as an Anderson-Hubbard model. These experiments find evidence for an intriguing insulating phase where quantum diffusion is completely suppressed by strong disorder. Quantitative interpretation of these experiments remains an open problem that requires inclusion of non-zero entropy, strong interaction, and trapping. We argue that the suppression of transport can be thought of as localization of Hubbard-band quasiparticles. We construct a theory of transport of Hubbard-band quasiparticles tailored to trapped optical lattice experiments. We compare the theory directly with center-of-mass transport experiments of Kondov et al. with no fitting parameters. The close agreement between theory and experiments shows that the suppression of transport is only partly due to finite entropy effects. We argue that the complete suppression of transport is consistent with Anderson localization of Hubbard-band quasiparticles. The combination of our theoretical framework and optical lattice experiments offers an important platform for studying localization in isolated many-body quantum systems.
Originally, the Hubbard model has been derived for describing the behaviour of strongly-correlated electrons in solids. However, since over a decade now, variations of it are also routinely being implemented with ultracold atoms in optical lattices. We review some of the rich literature on this subject, with a focus on more recent non-standard forms of the Hubbard model. After an introduction to standard (fermionic and bosonic) Hubbard models, we discuss briefly common models for mixtures, as well as the so called extended Bose-Hubbard models, that include interactions between neighboring sites, next-neighboring sites, and so on. The main part of the review discusses the importance of additional terms appearing when refining the tight-binding approximation on the original physical Hamiltonian. Even when restricting the models to the lowest Bloch band is justified, the standard approach neglects the density-induced tunneling (which has the same origin as the usual on-site interaction). The importance of these contributions is discussed for both contact and dipolar interactions. For sufficiently strong interactions, also the effects related to higher Bloch bands become important even for deep optical lattices. Different approaches that aim at incorporating these effects, mainly via dressing the basis Wannier functions with interactions, leading to effective, density-dependent Hubbard-type models, are reviewed. We discuss also examples of Hubbard-like models that explicitly involve higher $p$-orbitals, as well as models that couple dynamically spin and orbital degrees of freedom. Finally, we review mean-field nonlinear-Schrodinger models of the Salerno type that share with the non-standard Hubbard models the nonlinear coupling between the adjacent sites. In that part, discrete solitons are the main subject of the consideration. We conclude by listing some future open problems.
Using the quantum collapse and revival phenomenon of a Bose--Einstein condensate in three-dimensional optical lattices, the atom number statistics on each lattice site are experimentally investigated. We observe an interaction driven time evolution o f on-site number fluctuations in a constant lattice potential with the collapse and revival time ratio as the figure of merit. Through a shortcut loading procedure, we prepare a three-dimensional array of coherent states with Poissonian number fluctuations. The following dynamics clearly show the interaction effect on the evolution of the number fluctuations from Poissonian to sub-Poissonian. Our method can be used to create squeezed states which are important in precision measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا