ﻻ يوجد ملخص باللغة العربية
Quantum degenerate gases trapped in optical lattices are ideal testbeds for fundamental physics because these systems are tunable, well characterized, and isolated from the environment. Controlled disorder can be introduced to explore suppression of quantum diffusion in the absence of conventional dephasing mechanisms such as phonons, which are unavoidable in experiments on electronic solids. Recent experiments use transport of degenerate Fermi gases in optical lattices (Kondov et al. Phys. Rev. Lett. 114, 083002 (2015)) to probe a particularly extreme regime of strong interaction in what can be modeled as an Anderson-Hubbard model. These experiments find evidence for an intriguing insulating phase where quantum diffusion is completely suppressed by strong disorder. Quantitative interpretation of these experiments remains an open problem that requires inclusion of non-zero entropy, strong interaction, and trapping. We argue that the suppression of transport can be thought of as localization of Hubbard-band quasiparticles. We construct a theory of transport of Hubbard-band quasiparticles tailored to trapped optical lattice experiments. We compare the theory directly with center-of-mass transport experiments of Kondov et al. with no fitting parameters. The close agreement between theory and experiments shows that the suppression of transport is only partly due to finite entropy effects. We argue that the complete suppression of transport is consistent with Anderson localization of Hubbard-band quasiparticles. The combination of our theoretical framework and optical lattice experiments offers an important platform for studying localization in isolated many-body quantum systems.
Ultracold atoms in optical lattices offer a unique platform for investigating disorder-driven phenomena. While static disordered site potentials have been explored in a number of optical lattice experiments, a more general control over site-energy an
Originally, the Hubbard model has been derived for describing the behaviour of strongly-correlated electrons in solids. However, since over a decade now, variations of it are also routinely being implemented with ultracold atoms in optical lattices.
We numerically investigate, using the time evolving block decimation algorithm, the quantum transport of ultra-cold bosonic atoms in a double well optical lattice through slow and periodic modulation of the lattice parameters (intra- and inter-well t
We observe interband transitions mediated by the dipole-dipole interaction for an array of 1D quantum gases of chromium atoms, trapped in a 2D optical lattice. Interband transitions occur when dipolar relaxation releases an energy which matches or ov
We study three-leg-ladder optical lattices loaded with repulsive atomic Bose-Einstein condensates and subjected to artificial gauge fields. By employing the plane-wave analysis and variational approach, we analyze the band-gap structure of the energy