ترغب بنشر مسار تعليمي؟ اضغط هنا

Unprecedented Quality Factors at Accelerating Gradients up to 45 MV/m in Niobium Superconducting Resonators via Low Temperature Nitrogen Infusion

116   0   0.0 ( 0 )
 نشر من قبل Anna Grassellino
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the finding of new surface treatments that permit to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface infusion conditions that systematically a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have larger than two times the state of the art Q at 2K for accelerating fields > 35 MV/m. Moreover, very high accelerating gradients ~ 45 MV/m are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.

قيم البحث

اقرأ أيضاً

In this paper we present the discovery of a new surface treatment applied to superconducting radio frequency (SRF) niobium cavities, leading to unprecedented accelerating fields of 49 MV/m in TESLA-shaped cavities, in continuous wave (CW); the corres ponding peak magnetic fields are the highest ever measured in CW, about 210 mT. For TESLA-shape cavities the maximum quench field ever achieved was ~45 MV/m - reached very rarely- with most typical values being below 40 MV/m. These values are reached for niobium surfaces treated with electropolishing followed by the so called mild bake, a 120C vacuum bake (for 48 hours for fine grain and 24 hours for large grain surfaces). We discover that the addition during the mild bake of a step at 75C for few hours, before the 120C, increases systematically the quench fields up to unprecedented values of 49 MV/m. The significance of the result lays not only in the relative improvement, but in the proof that niobium surfaces can sustain and exceed CW radio frequency magnetic fields much larger than Hc1, pointing to an extrinsic nature of the current field limitations, and therefore to the potential to reach accelerating fields well beyond the current state of the art.
Ambient magnetic field, if trapped in the penetration depth, leads to the residual resistance and therefore sets the limit for the achievable quality factors in superconducting niobium resonators for particle accelerators. Here we show that a complet e expulsion of the magnetic flux can be performed and leads to: 1) record quality factors $Q > 2times10^{11}$ up to accelerating gradient of 22 MV/m; 2) $Qsim3times10^{10}$ at 2 K and 16 MV/m in up to 190 mG magnetic fields. This is achieved by large thermal gradients at the normal/superconducting phase front during the cooldown. Our findings open up a way to ultra-high quality factors at low temperatures and show an alternative to the sophisticated magnetic shielding implemented in modern superconducting accelerators.
We report the rf performance of a single-cell superconducting radiofrequency cavity after low temperature baking in a nitrogen environment. A significant increase in quality factor has been observed when the cavity was heat treated in the temperature range of 120-160 {deg}C with a nitrogen partial pressure of ~25 mTorr. This increase in quality factor as well as the Q-rise phenomenon (anti-Q-slope) is similar to those previously obtained with high temperature nitrogen doping as well as titanium doping. In this study, a cavity N2-treated at 120 {deg}C and at140 {deg}C, showed no degradation in accelerating gradient, however the accelerating gradient was degraded by 25 with a 160 {deg}C N2 treatment. Sample coupons treated in the same conditions as the cavity were analyzed by scanning electron microscope, x-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a complex surface composition of Nb_2O5, NbO and NbN(1-x)Ox within the rf penetration depth. Furthermore, magnetization measurements showed no significant change on bulk superconducting properties.
We report a surface treatment that systematically improves the quality factor of niobium radio frequency cavities beyond the expected limit for niobium. A combination of annealing in a partial pressure of nitrogen or argon gas and subsequent electrop olishing of the niobium cavity surface leads to unprecedented low values of the microwave surface resistance, and an improvement in the efficiency of the accelerating structures up to a factor of 3, reducing the cryogenic load of superconducting cavities for both pulsed and continuous duty cycles. The field dependence of the surface resistance is reversed compared to standardly treated niobium.
Carbon nanotube mechanical resonators have attracted considerable interest because of their small mass, the high quality of their surface, and the pristine electronic states they host. However, their small dimensions result in fragile vibrational sta tes that are difficult to measure. Here we observe quality factors $Q$ as high as $5times10^6$ in ultra-clean nanotube resonators at a cryostat temperature of 30 mK, where we define $Q$ as the ratio of the resonant frequency over the linewidth. Measuring such high quality factors requires both employing an ultra-low noise method to detect minuscule vibrations rapidly, and carefully reducing the noise of the electrostatic environment. We observe that the measured quality factors fluctuate because of fluctuations of the resonant frequency. The quality factors we measure are record high; they are comparable to the highest $Q$ reported in mechanical resonators of much larger size, a remarkable result considering that reducing the size of resonators is usually concomitant with decreasing quality factors. The combination of ultra-low size and very large $Q$ offers new opportunities for ultra-sensitive detection schemes and quantum optomechanical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا