ﻻ يوجد ملخص باللغة العربية
The aim of this paper is to introduce and study a large class of $mathfrak{g}$-module algebras which we call factorizable by generalizing the Gauss factorization of (square or rectangular) matrices. This class includes coordinate algebras of corresponding reductive groups $G$, their parabolic subgroups, basic affine spaces and many others. It turns out that tensor products of factorizable algebras are also factorizable and it is easy to create a factorizable algebra out of virtually any $mathfrak{g}$-module algebra. We also have quant
For a symmetrizable GCM $C$ and its symmetrizer $D$, Geiss-Leclerc-Schroer [Invent. Math. 209 (2017)] has introduced a generalized preprojective algebra $Pi$ associated to $C$ and $D$, that contains a class of modules, called locally free modules. We
Let $U_q(mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $mathcal{C}^0_{mathfrak{g}}$ be Hernandez-Leclercs category. For a duality datum $mathcal{D}$ in $mathcal{C}^0_{mathfrak{g}}$, we denote by $mathcal{F}_{mathcal{D
Let $mathfrak{g}_0$ be a simple Lie algebra of type ADE and let $U_q(mathfrak{g})$ be the corresponding untwisted quantum affine algebra. We show that there exists an action of the braid group $B(mathfrak{g}_0)$ on the quantum Grothendieck ring $K_t(
Let $R := R_{2}(p)=mathbb{C}[t^{pm 1}, u : u^2 = t(t-alpha_1)cdots (t-alpha_{2n})] $ be the coordinate ring of a nonsingular hyperelliptic curve and let $mathfrak{g}otimes R$ be the corresponding current Lie algebra. color{black} Here $mathfrak g$ is
Motivated by the relation between Schur algebra and the group algebra of a symmetric group, along with other similar examples in algebraic Lie theory, Min Fang and Steffen Koenig addressed some behaviour of the endomorphism algebra of a generator ove