ترغب بنشر مسار تعليمي؟ اضغط هنا

A characterization of the Radon-Nikodym property for vector valued measures

101   0   0.0 ( 0 )
 نشر من قبل Piotr Mikusinski
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

If $mu_1,mu_2,dots$ are positive measures on a measurable space $(X,Sigma)$ and $v_1,v_2, dots$ are elements of a Banach space ${mathbb E}$ such that $sum_{n=1}^infty |v_n| mu_n(X) < infty$, then $omega (S)= sum_{n=1}^infty v_n mu_n(S)$ defines a vector measure of bounded variation on $(X,Sigma)$. We show ${mathbb E}$ has the Radon-Nikodym property if and only if every ${mathbb E}$-valued measure of bounded variation on $(X,Sigma)$ is of this form. As an application of this result we show that under natural conditions an operator defined on positive measures, has a unique extension to an operator defined on ${mathbb E}$-valued measures for any Banach space ${mathbb E}$ that has the Radon-Nikodym property.

قيم البحث

اقرأ أيضاً

We clarify the relation between inverse systems, the Radon-Nikodym property, the Asymptotic Norming Property of James-Ho, and the GFDA spaces introduced in our earlier paper on differentiability of Lipschitz maps into Banach spaces.
106 - Kexin Zhao , Dongni Tan 2020
This paper deals with a property which is equivalent to generalised-lushness for separable spaces. It thus may be seemed as a geometrical property of a Banach space which ensures the space to have the Mazur-Ulam property. We prove that if a Banach sp ace $X$ enjoys this property if and only if $C(K,X)$ enjoys this property. We also show the same result holds for $L_infty(mu,X)$ and $L_1(mu,X)$.
59 - F. Gomez-Cubillo 2020
Admissible vectors lead to frames or coherent states under the action of a group by means of square integrable representations. This work shows that admissible vectors can be seen as weights with central support on the (left) group von Neumann algebr a. The analysis involves spatial and cocycle derivatives, noncommutative $L^p$-Fourier transforms and Radon-Nikodym theorems. Square integrability confine the weights in the predual of the algebra and everything may be written in terms of a (right selfdual) bounded element.
We study the computational content of the Radon-Nokodym theorem from measure theory in the framework of the representation approach to computable analysis. We define computable measurable spaces and canonical representations of the measures and the i ntegrable functions on such spaces. For functions f,g on represented sets, f is W-reducible to g if f can be computed by applying the function g at most once. Let RN be the Radon-Nikodym operator on the space under consideration and let EC be the non-computable operator mapping every enumeration of a set of natural numbers to its characteristic function. We prove that for every computable measurable space, RN is W-reducible to EC, and we construct a computable measurable space for which EC is W-reducible to RN.
174 - Miklos Laczkovich 2020
Let $G$ be a topological Abelian semigroup with unit, let $E$ be a Banach space, and let $C(G,E)$ denote the set of continuous functions $fcolon Gto E$. A function $fin C(G,E)$ is a generalized polynomial, if there is an $nge 0$ such that $Delta_{h_1 } ldots Delta_{h_{n+1}} f=0$ for every $h_1 ,ldots , h_{n+1} in G$, where $Delta_h$ is the difference operator. We say that $fin C(G,E)$ is a polynomial, if it is a generalized polynomial, and the linear span of its translates is of finite dimension; $f$ is a w-polynomial, if $ucirc f$ is a polynomial for every $uin E^*$, and $f$ is a local polynomial, if it is a polynomial on every finitely generated subsemigroup. We show that each of the classes of polynomials, w-polynomials, generalized polynomials, local polynomials is contained in the next class. If $G$ is an Abelian group and has a dense subgroup with finite torsion free rank, then these classes coincide. We introduce the classes of exponential polynomials and w-expo-nential polynomials as well, establish their representations and connection with polynomials and w-polynomials. We also investigate spectral synthesis and analysis in the class $C(G,E)$. It is known that if $G$ is a compact Abelian group and $E$ is a Banach space, then spectral synthesis holds in $C(G,E)$. On the other hand, we show that if $G$ is an infinite and discrete Abelian group and $E$ is a Banach space of infinite dimension, then even spectral analysis fails in $C(G,E)$. If, however, $G$ is discrete, has finite torsion free rank and if $E$ is a Banach space of finite dimension, then spectral synthesis holds in $C(G,E)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا