ﻻ يوجد ملخص باللغة العربية
Let $G$ be a topological Abelian semigroup with unit, let $E$ be a Banach space, and let $C(G,E)$ denote the set of continuous functions $fcolon Gto E$. A function $fin C(G,E)$ is a generalized polynomial, if there is an $nge 0$ such that $Delta_{h_1} ldots Delta_{h_{n+1}} f=0$ for every $h_1 ,ldots , h_{n+1} in G$, where $Delta_h$ is the difference operator. We say that $fin C(G,E)$ is a polynomial, if it is a generalized polynomial, and the linear span of its translates is of finite dimension; $f$ is a w-polynomial, if $ucirc f$ is a polynomial for every $uin E^*$, and $f$ is a local polynomial, if it is a polynomial on every finitely generated subsemigroup. We show that each of the classes of polynomials, w-polynomials, generalized polynomials, local polynomials is contained in the next class. If $G$ is an Abelian group and has a dense subgroup with finite torsion free rank, then these classes coincide. We introduce the classes of exponential polynomials and w-expo-nential polynomials as well, establish their representations and connection with polynomials and w-polynomials. We also investigate spectral synthesis and analysis in the class $C(G,E)$. It is known that if $G$ is a compact Abelian group and $E$ is a Banach space, then spectral synthesis holds in $C(G,E)$. On the other hand, we show that if $G$ is an infinite and discrete Abelian group and $E$ is a Banach space of infinite dimension, then even spectral analysis fails in $C(G,E)$. If, however, $G$ is discrete, has finite torsion free rank and if $E$ is a Banach space of finite dimension, then spectral synthesis holds in $C(G,E)$.
We prove that for every Banach space $Y$, the Besov spaces of functions from the $n$-dimensional Euclidean space to $Y$ agree with suitable local approximation spaces with equivalent norms. In addition, we prove that the Sobolev spaces of type $q$ ar
This work is dedicated to the development of the theory of Fourier hyperfunctions in one variable with values in a complex non-necessarily metrisable locally convex Hausdorff space $E$. Moreover, necessary and sufficient conditions are described such
This paper deals with a property which is equivalent to generalised-lushness for separable spaces. It thus may be seemed as a geometrical property of a Banach space which ensures the space to have the Mazur-Ulam property. We prove that if a Banach sp
For suitable finite-dimensional smooth manifolds M (possibly with various kinds of boundary or corners), locally convex topological vector spaces F and non-negative integers k, we construct continuous linear operators S_n from the space of F-valued k
We study Fourier and Laplace transforms for Fourier hyperfunctions with values in a complex locally convex Hausdorff space. Since any hyperfunction with values in a wide class of locally convex Hausdorff spaces can be extended to a Fourier hyperfunct