ترغب بنشر مسار تعليمي؟ اضغط هنا

Synchronization is full measure for all $alpha$-deformations of an infinite class of continued fraction transformations

72   0   0.0 ( 0 )
 نشر من قبل Thomas Schmidt
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study an infinite family of one-parameter deformations, so-called $alpha$-continued fractions, of interval maps associated to distinct triangle Fuchsian groups. In general for such one-parameter deformations, the function giving the entropy of the map indexed by $alpha$ varies in a way directly related to whether or not the orbits of the endpoints of the map synchronize. For two cases of one-parameter deformations associated to the classical case of the modular group $text{PSL}_2(mathbb Z)$, the set of $alpha$ for which synchronization occurs has been determined. Here, we explicitly determine the synchronization sets for each $alpha$-deformation in our infinite family. (In general, our Fuchsian groups are not subgroups of the modular group, and hence the tool of relating $alpha$-expansions back to regular continued fraction expansions is not available to us.) A curiosity here is that all of our synchronization sets can be described in terms of a single tree of words. In a paper in preparation, we identify the natural extensions of our maps, as well as the entropy functions associated to each deformation.



قيم البحث

اقرأ أيضاً

62 - Hiroaki Ito 2020
We show that the growth rate of denominator $Q_n$ of the $n$-th convergent of negative expansion of $x$ and the rate of approximation: $$ frac{log{n}}{n}log{left|x-frac{P_n}{Q_n}right|}rightarrow -frac{pi^2}{3} quad text{in measure.} $$ for a.e. $x$. In the course of the proof, we reprove known inspiring results that arithmetic mean of digits of negative continued fraction converges to 3 in measure, although the limit inferior is 2, and the limit superior is infinite almost everywhere.
We compute explicitly the density of the invariant measure for the Reverse algorithm which is absolutely continuous with respect to Lebesgue measure, using a method proposed by Arnoux and Nogueira. We also apply the same method on the unsorted versio n of Brun algorithm and Cassaigne algorithm. We illustrate some experimentations on the domain of the natural extension of those algorithms. For some other algorithms, which are known to have a unique invariant measure absolutely continuous with respect to Lebesgue measure, the invariant domain found by this method seems to have a fractal boundary, and it is unclear that it is of positive measure.
We adjust Arnouxs coding, in terms of regular continued fractions, of the geodesic flow on the modular surface to give a cross section on which the return map is a double cover of the natural extension for the alpha-continued fractions, for each $alp ha$ in (0,1]. The argument is sufficiently robust to apply to the Rosen continued fractions and their recently introduced alpha-variants.
The goal of this paper is to formulate a systematical method for constructing the fastest possible continued fraction approximations of a class of functions. The main tools are the multiple-correction method, the generalized Morticis lemma and the Mo rtici-transformation. As applications, we will present some sharp inequalities, and the continued fraction expansions associated to the volume of the unit ball. In addition, we obtain a new continued fraction expansion of Ramanujan for a ratio of the gamma functions, which is showed to be the fastest possible. Finally, three conjectures are proposed.
67 - Hiroki Takahasi 2019
We establish the (level-1) large deviation principles for three kinds of means associated with the backward continued fraction expansion. We show that: for the harmonic and geometric means, the rate functions vanish exactly at one point; for the arit hmetic mean, it is completely degenerate, vanishing at every point in its effective domain. Our method of proof employs the thermodynamic formalism for finite Markov shifts, and a multifractal analysis for the Renyi map generating the backward continued fraction digits. We completely determine the class of unbounded arithmetic functions for which the rate functions vanish at every point in unbounded intervals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا