ﻻ يوجد ملخص باللغة العربية
We compute explicitly the density of the invariant measure for the Reverse algorithm which is absolutely continuous with respect to Lebesgue measure, using a method proposed by Arnoux and Nogueira. We also apply the same method on the unsorted version of Brun algorithm and Cassaigne algorithm. We illustrate some experimentations on the domain of the natural extension of those algorithms. For some other algorithms, which are known to have a unique invariant measure absolutely continuous with respect to Lebesgue measure, the invariant domain found by this method seems to have a fractal boundary, and it is unclear that it is of positive measure.
We show that the growth rate of denominator $Q_n$ of the $n$-th convergent of negative expansion of $x$ and the rate of approximation: $$ frac{log{n}}{n}log{left|x-frac{P_n}{Q_n}right|}rightarrow -frac{pi^2}{3} quad text{in measure.} $$ for a.e. $x$.
We establish the (level-1) large deviation principles for three kinds of means associated with the backward continued fraction expansion. We show that: for the harmonic and geometric means, the rate functions vanish exactly at one point; for the arit
We study an infinite family of one-parameter deformations, so-called $alpha$-continued fractions, of interval maps associated to distinct triangle Fuchsian groups. In general for such one-parameter deformations, the function giving the entropy of the
This paper introduces a new difference scheme to the difference equations for N-body type problems. To find the non-collision periodic solutions and generalized periodic solutions in multi-radial symmetric constraint for the N-body type difference eq
We compare two families of continued fractions algorithms, the symmetrized Rosen algorithm and the Veech algorithm. Each of these algorithms expands real numbers in terms of certain algebraic integers. We give explicit models of the natural extension