ﻻ يوجد ملخص باللغة العربية
We present $text{Fuchsia}$ $-$ an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients $partial_x,mathbf{f}(x,epsilon) = mathbb{A}(x,epsilon),mathbf{f}(x,epsilon)$ finds a basis transformation $mathbb{T}(x,epsilon)$, i.e., $mathbf{f}(x,epsilon) = mathbb{T}(x,epsilon),mathbf{g}(x,epsilon)$, such that the system turns into the epsilon form: $partial_x, mathbf{g}(x,epsilon) = epsilon,mathbb{S}(x),mathbf{g}(x,epsilon)$, where $mathbb{S}(x)$ is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator $epsilon$. That makes the construction of the transformation $mathbb{T}(x,epsilon)$ crucial for obtaining solutions of the initial equations. In principle, $text{Fuchsia}$ can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals.
We report on the recent progress in reducing differential equations for Feynman master integrals to canonical form with the help of a method proposed by Roman Lee. For the first time, we present Fuchsia --- our open-source implementation of the Lee a
Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations. These lectures give a review of these developments, while not assuming any prior knowledge of the subject. Aft
We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales,
We elucidate the vector space (twisted relative cohomology) that is Poincare dual to the vector space of Feynman integrals (twisted cohomology) in general spacetime dimension. The pairing between these spaces - an algebraic invariant called the inter
We present short review of two methods for obtaining functional equations for Feynman integrals. Application of these methods for finding functional equations for one- and two- loop integrals is described in detail. It is shown that with the aid of f