ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolutionary Description of Giant Molecular Cloud Mass Functions on Galactic Disks

57   0   0.0 ( 0 )
 نشر من قبل Masato Kobayashi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent radio observations show that the giant molecular cloud (GMC) mass functions noticeably vary across galactic disks. High-resolution magnetohydrodynamics simulations show that multiple episodes of compression are required for creating a molecular cloud in the magnetized interstellar medium. In this article, we formulate the evolution equation for the GMC mass function to reproduce the observed profiles, for which multiple compression are driven by the network of expanding shells due to HII regions and supernova remnants. We introduce the cloud-cloud collision (CCC) terms in the evolution equation in contrast to the previous work (Inutsuka et al. 2015). The computed time evolution suggests that the GMC mass function slope is governed by the ratio of GMC formation timescale to its dispersal timescale, and that the CCC effect is limited only in the massive-end of the mass function. In addition, we identify a gas resurrection channel that allows the gas dispersed by massive stars to regenerate GMC populations or to accrete onto the pre-existing GMCs. Our results show that almost all of the dispersed gas contribute to the mass growth of pre-existing GMCs in arm regions whereas less than 60 per cent in inter-arm regions. Our results also predict that GMC mass functions have a single power-law exponent in the mass range < 10^5.5 Msun (where Msun represents the solar mass), which is well characterized by GMC self-growth and dispersal timescales. Measurement of the GMC mass function slope provides a powerful method to constrain those GMC timescales and the gas resurrecting factor in various environment across galactic disks.

قيم البحث

اقرأ أيضاً

We use the distance probability density function (DPDF) formalism of Ellsworth-Bowers et al. (2013, 2015) to derive physical properties for the collection of 1,710 Bolocam Galactic Plane Survey (BGPS) version 2 sources with well-constrained distance estimates. To account for Malmquist bias, we estimate that the present sample of BGPS sources is 90% complete above 400 $M_odot$ and 50% complete above 70 $M_odot$. The mass distributions for the entire sample and astrophysically motivated subsets are generally fitted well by a lognormal function, with approximately power-law distributions at high mass. Power-law behavior emerges more clearly when the sample population is narrowed in heliocentric distance (power-law index $alpha = 2.0pm0.1$ for sources nearer than 6.5 kpc and $alpha = 1.9pm0.1$ for objects between 2 kpc and 10 kpc). The high-mass power-law indices are generally $1.85 leq alpha leq 2.05$ for various subsamples of sources, intermediate between that of giant molecular clouds and the stellar initial mass function. The fit to the entire sample yields a high-mass power-law $hat{alpha} = 1.94_{-0.10}^{+0.34}$. Physical properties of BGPS sources are consistent with large molecular cloud clumps or small molecular clouds, but the fractal nature of the dense interstellar medium makes difficult the mapping of observational categories to the dominant physical processes driving the observed structure. The face-on map of the Galactic disks mass surface density based on BGPS dense molecular cloud structures reveals the high-mass star-forming regions W43, W49, and W51 as prominent mass concentrations in the first quadrant. Furthermore, we present a 0.25-kpc resolution map of the dense gas mass fraction across the Galactic disk that peaks around 5%.
Similarity in shape between the initial mass function (IMF) and the core mass functions (CMFs) in star-forming regions prompts the idea that the IMF originates from the CMF through a self-similar core-to-star mass mapping process. To accurately deter mine the shape of the CMF, we create a sample of 8,431 cores with the dust continuum maps of the Cygnus X giant molecular cloud complex, and design a procedure for deriving the CMF considering the mass uncertainty, binning uncertainty, sample incompleteness, and the statistical errors. The resultant CMF coincides well with the IMF for core masses from a few $M_{odot}$ to the highest masses of 1300 $M_{odot}$ with a power-law of ${rm d}N/{rm d}Mpropto M^{-2.30pm0.04}$, but does not present an obvious flattened turnover in the low-mass range as the IMF does. More detailed inspection reveals that the slope of the CMF steepens with increasing mass. Given the numerous high-mass star-forming activities of Cygnus X, this is in stark contrast with the existing top-heavy CMFs found in high-mass star-forming clumps. We also find that the similarity between the IMF and the mass function of cloud structures is not unique at core scales, but can be seen for cloud structures of up to several pc scales. Finally, our SMA observations toward a subset of the cores do not present evidence for the self-similar mapping. The latter two results indicate that the shape of the IMF may not be directly inherited from the CMF.
We report the first evidence for high-mass star formation triggered by collisions of molecular clouds in M33. Using the Atacama Large Millimeter/submillimeter Array, we spatially resolved filamentary structures of giant molecular cloud 37 in M33 usin g $^{12}$CO($J$ = 2-1), $^{13}$CO($J$ = 2-1), and C$^{18}$O($J$ = 2-1) line emission at a spatial resolution of $sim$2 pc. There are two individual molecular clouds with a systematic velocity difference of $sim$6 km s$^{-1}$. Three continuum sources representing up to $sim$10 high-mass stars with the spectral types of B0V-O7.5V are embedded within the densest parts of molecular clouds bright in the C$^{18}$O($J$ = 2-1) line emission. The two molecular clouds show a complementary spatial distribution with a spatial displacement of $sim$6.2 pc, and show a V-shaped structure in the position-velocity diagram. These observational features traced by CO and its isotopes are consistent with those in high-mass star-forming regions created by cloud-cloud collisions in the Galactic and Magellanic Cloud HII regions. Our new finding in M33 indicates that the cloud-cloud collision is a promising process to trigger high-mass star formation in the Local Group.
We compare the mass functions of young star clusters (ages $leq 10$ Myr) and giant molecular clouds (GMCs) in six galaxies that cover a large range in mass, metallicity, and star formation rate (LMC, M83, M51, NGC 3627, the Antennae, and NGC 3256). W e perform maximum-likelihood fits of the Schechter function, $psi(M) = dN/dM propto M^{beta} exp(-M/M_*)$, to both populations. We find that most of the GMC and cluster mass functions in our sample are consistent with a pure power-law distribution ($M_* rightarrow infty$). M51 is the only galaxy that shows some evidence for an upper cutoff ($M_*$) in both populations. Therefore, physical upper mass cutoffs in populations of both GMCs and clusters may be the exception rather than the rule. When we perform power-law fits, we find a range of indices $beta_{rm PL}=-2.3pm0.3$ for our GMC sample and $beta_{rm PL}=-2.0pm0.3$ for the cluster sample. This result, that $beta_{rm Clusters} approx beta_{rm GMC} approx -2$, is consistent with theoretical predictions for cluster formation and suggests that the star-formation efficiency is largely independent of mass in the GMCs.
We study Giant Molecular Cloud (GMC) environments surrounding 10 Infrared Dark Clouds (IRDCs), using $^{13}$CO(1-0) emission from the Galactic Ring Survey. We measure physical properties of these IRDCs/GMCs on a range of scales extending to radii, R, of 30 pc. By comparing different methods for defining cloud boundaries and for deriving mass surface densities and velocity dispersions, we settle on a preferred CE,$tau$,G method of Connected Extraction in position-velocity space plus Gaussian fitting to opacity-corrected line profiles for velocity dispersion and mass estimation. We examine how cloud definition affects measurements of the magnitude and direction of line-of-sight velocity gradients and velocity dispersions, including associated dependencies on size scale. CE,$tau$,G-defined GMCs show velocity dispersion versus size relations $sigmapropto{s}^{1/2}$, which are consistent with the large-scale gradients being caused by turbulence. However, IRDCs have velocity dispersions that are moderately enhanced above those predicted by this scaling relation. We examine the dynamical state of the clouds finding mean virial parameters $bar{alpha}_{rm{vir}}simeq 1.0$ for GMCs and 1.6 for IRDCs, broadly consistent with models of magnetized virialized pressure-confined polytropic clouds, but potentially indicating that IRDCs have more disturbed kinematics. CE,$tau$,G-defined clouds exhibit a tight correlation of $sigma/R^{1/2}proptoSigma^n$, with $nsimeq0.7$ for GMCs and 1.3 for IRDCs (c.f., a value of 0.5 expected for a population of virialized clouds). We conclude that while GMCs show evidence for virialization over a range of scales, IRDCs may be moderately super virial. Alternatively, IRDCs could be virialized but have systematically different $^{13}$CO gas phase abundances, i.e., due to freeze-out, affecting mass estimations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا