ترغب بنشر مسار تعليمي؟ اضغط هنا

Collinear order and chirality-reorientation transition in the Cairo pentagonal magnet Bi$_4$Fe$_5$O$_{13}$F

44   0   0.0 ( 0 )
 نشر من قبل Alexander Tsirlin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi$_4$Fe$_5$O$_{13}$F, on one hand mediating the three-dimensional (3D) magnetic order and on the other driving spin-reorientation transitions both within and between the planes. The corresponding sequence of magnetic orders unraveled by neutron diffraction and Mossbauer spectroscopy features two orthogonal magnetic structures described by opposite local vector chiralities, and an intermediate, partly disordered phase with nearly collinear spins. A similar collinear phase has been predicted theoretically to be stabilized by quantum fluctuations, but Bi$_4$Fe$_5$O$_{13}$F is very far from the relevant parameter regime. While the observed in-plane reorientation cannot be explained by any standard frustration mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the interlayer Fe$^{3+}$ spins that turns out to be instrumental in controlling the local vector chirality and the associated interlayer order.



قيم البحث

اقرأ أيضاً

A phase transition is often accompanied by the appearance of an order parameter and symmetry breaking. Certain magnetic materials exhibit exotic hidden-order phases, in which the order parameters are not directly accessible to conventional magnetic m easurements. Thus, experimental identification and theoretical understanding of a hidden order are difficult. Here we combine neutron scattering and thermodynamic probes to study the newly discovered rare-earth triangular-lattice magnet TmMgGaO$_4$. Clear magnetic Bragg peaks at K points are observed in the elastic neutron diffraction measurements. More interesting, however, is the observation of sharp and highly dispersive spin excitations that cannot be explained by a magnetic dipolar order, but instead is the direct consequence of the underlying multipolar order that is hidden in the neutron diffraction experiments. We demonstrate that the observed unusual spin correlations and thermodynamics can be accurately described by a transverse field Ising model on the triangular lattice with an intertwined dipolar and ferro-multipolar order.
The research field of magnetic frustration is dominated by triangle-based lattices but exotic phenomena can also be observed in pentagonal networks. A peculiar noncollinear magnetic order is indeed known to be stabilized in Bi2Fe4O9 materializing a C airo pentagonal lattice. We present the spin wave excitations in the magnetically ordered state, obtained by inelastic neutron scattering. They reveal an unconventional excited state related to local precession of pairs of spins. The magnetic excitations are then modeled to determine the superexchange interactions for which the frustration is indeed at the origin of the spin arrangement. This analysis unveils a hierarchy in the interactions, leading to a paramagnetic state (close to the Neel temperature) constituted of strongly coupled dimers separated by much less correlated spins. This produces two types of response to an applied magnetic field associated with the two nonequivalent Fe sites, as observed in the magnetization distributions obtained using polarized neutrons.
Strongly correlated electrons in layered perovskite structures have been the birthplace of high-temperature superconductivity, spin liquid, and quantum criticality. Specifically, the cuprate materials with layered structures made of corner sharing sq uare planar CuO$_4$ units have been intensely studied due to their Mott insulating grounds state which leads to high-temperature superconductivity upon doping. Identifying new compounds with similar lattice and electronic structures has become a challenge in solid state chemistry. Here, we report the hydrothermal crystal growth of a new copper tellurite sulfate Cu$_3$(TeO$_4$)(SO$_4$)$cdot$H$_2$O, a promising alternative to layered perovskites. The orthorhombic phase (space group $Pnma$) is made of corrugated layers of corner-sharing CuO$_4$ square-planar units that are edge-shared with TeO$_4$ units. The layers are linked by slabs of corner-sharing CuO$_4$ and SO$_4$. Using both the bond valence sum analysis and magnetization data, we find purely Cu$^{2+}$ ions within the layers, but a mixed valence of Cu$^{2+}$/Cu${^+}$ between the layers. Cu$_3$(TeO$_4$)(SO$_4$)$cdot$H$_2$O undergoes an antiferromagnetic transition at $T_N$=67 K marked by a peak in the magnetic susceptibility. Upon further cooling, a spin-canting transition occurs at $T^{star}$=12 K evidenced by a kink in the heat capacity. The spin-canting transition is explained based on a $J_1$-$J_2$ model of magnetic interactions, which is consistent with the slightly different in-plane super-exchange paths. We present Cu$_3$(TeO$_4$)(SO$_4$)$cdot$H$_2$O as a promising platform for the future doping and strain experiments that could tune the Mott insulating ground state into superconducting or spin liquid states.
Magnetic frustration and low dimensionality can prevent long range magnetic order and lead to exotic correlated ground states. SrDy$_2$O$_4$ consists of magnetic Dy$^{3+}$ ions forming magnetically frustrated zig-zag chains along the c-axis and shows no long range order to temperatures as low as $T=60$ mK. We carried out neutron scattering and AC magnetic susceptibility measurements using powder and single crystals of SrDy$_2$O$_4$. Diffuse neutron scattering indicates strong one-dimensional (1D) magnetic correlations along the chain direction that can be qualitatively accounted for by the axial next-nearest neighbour Ising (ANNNI) model with nearest-neighbor and next-nearest-neighbor exchange $J_1=0.3$ meV and $J_2=0.2$ meV, respectively. Three-dimensional (3D) correlations become important below $T^*approx0.7$ K. At $T=60$ mK, the short range correlations are characterized by a putative propagation vector $textbf{k}_{1/2}=(0,frac{1}{2},frac{1}{2})$. We argue that the absence of long range order arises from the presence of slowly decaying 1D domain walls that are trapped due to 3D correlations. This stabilizes a low-temperature phase without long range magnetic order, but with well-ordered chain segments separated by slowly-moving domain walls.
We investigate ytterbium gallium garnet Yb$_{3}$Ga$_{5}$O$_{12}$ in the paramagnetic phase above the supposed magnetic transition at $T_{lambda} approx 54$ mK. Our study combines susceptibility and specific heat measurements with neutron scattering e xperiments and theoretical calculations. Below 500 mK, the elastic neutron response is strongly peaked in the momentum space. Along with that the inelastic spectrum develops flat excitation modes. In magnetic field, the lowest energy branch follows a Zeeman shift in accordance with the field-dependent specific heat data. An intermediate state with spin canting away from the field direction is evidenced in small magnetic fields. In the field of 2 T, the total magnetization almost saturates and the measured excitation spectrum is well reproduced by the spin-wave calculations taking into account solely the dipole-dipole interactions. The small positive Curie-Weiss temperature derived from the susceptibility measurements is also accounted for by the dipole spin model. Altogether, our results suggest that Yb$_{3}$Ga$_{5}$O$_{12}$ is a quantum dipolar magnet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا