ترغب بنشر مسار تعليمي؟ اضغط هنا

Training-induced inversion of spontaneous exchange bias field on La1.5Ca0.5CoMnO6

285   0   0.0 ( 0 )
 نشر من قبل Eduardo Bittar
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we report the synthesis and structural, electronic and magnetic properties of La1.5Ca0.5CoMnO6 double-perovskite. This is a re-entrant spin cluster material which exhibits a non-negligible negative exchange bias effect when it is cooled in zero magnetic field from an unmagnetized state down to low temperature. X-ray powder diffraction, X-ray photoelectron spectroscopy and magnetometry results indicate mixed valence state at Co site, leading to competing magnetic phases and uncompensated spins at the magnetic interfaces. We compare the results for this Ca-doped material with those reported for the resemblant compound La1.5Sr0.5CoMnO6, and discuss the much smaller spontaneous exchange bias effect observed for the former in terms of its structural and magnetic particularities. For La1.5Ca0.5CoMnO6, when successive magnetization loops are carried, the spontaneous exchange bias field inverts its sign from negative to positive from the first to the second measurement. We discuss this behavior based on the disorder at the magnetic interfaces, related to the presence of a glassy phase. This compound also exhibits a large conventional exchange bias, for which there is no sign inversion of the exchange bias field for consecutive cycles.



قيم البحث

اقرأ أيضاً

We report a giant zero field cooled exchange bias (ZEB) effect (~0.65 T) in La1.5Sr0.5CoMnO6 sample. Magnetic study has revealed a reentrant spin glass ~90 K, phase separation to spin glass and ferromagnetic phases below 50 K and canted antiferromagn etic transition ~10 K. A small conventional exchange bias (CEB) is established with the advent of spontaneous phase separation down to 10 K. Giant ZEB and enhanced CEB effects are found only below 10 K and are attributed to the large unidirectional anisotropy at the interface of isothermally field induced ferromagnetic phase and canted antiferromagnetic background.
87 - J. Li , X. Wang , J.J. Deng 2019
The mechanism of spontaneous exchange bias (SEB) and the dominant factor of its blocking temperature are still unclear in Heusler alloys. Here, the related investigations are performed in Mn2Ni1.5Al0.5 Heusler alloys with SEB. The results of both mag netic measurements and first-principles calculations confirmed that spin frustrated and unfrustrated antiferromagnetic (AFM) states coexist there and they have different magnetic anisotropies, which are essential for SEB. Based on a series of measurement strategies, we demonstrate that the frustrated AFM state undergoes a first-order magnetic transition to the superferromagnet (SFM) state with the help of an external magnetic field, and SFM is retained due to the first-order property of the magnetic transition. SEB originates from the interface coupling of multiple sublattices between the unfrustrated AFM state and SFM state. By analyzing the Arrott plot using the Landau model, we found that the internal field of the system dominates the blocking temperature of SEB, which paves the way for improving the blocking temperature.
We report the magnetic and dielectric behavior of Pb6Ni9(TeO6)5, a new compound comprising the honeycomb-like layers of S=1 spins, through detailed structural, magnetic and dielectric investigation. An antiferromagnetic-type transition at 25 K (TN) w ith weak-ferromagnetic behavior is revealed. Interestingly, a large value of coercive field of 1.32 T at 2 K is observed. The isothermal magnetization after zero-field-cooled condition, it exhibits the presence of large spontaneous exchange bias (SEB) with a magnitude of 0.19 T at 2 K; which is rare in single bulk materials, especially without external doping. The value of |HEB| further enhances to 0.24 T under 16 T field-cooled condition, confirming the presence of large exchange bias in the material. In addition, the dielectric constant shows an anomaly at the onset of TN, indicating the presence of magnetodielectric coupling.
Exchange bias (EB) and the training effects (TE) in an antiferromagnetically coupled La0.7Sr0.3MnO3 / SrRuO3 superlattices were studied in the temperature range 1.8 - 150 K. Strong antiferromagnetic (AFM) interlayer coupling is evidenced from AC - su sceptibility measurements. Below 100 K, vertical magnetization shifts are present due to the two remanent states corresponding to the two ferromagnetic (FM) layers at FM and AFM coupling condition. After field cooling (FC), significant decrease in the exchange bias field (HEB) is observed when cycling the system through several consecutive hysteresis loops. Quantitative analysis for the variation of HEB vs. number of field cycles (n) indicates an excellent agreement between the theory, based on triggered relaxation phenomena, and our experimental observations. Nevertheless, the crucial fitting parameter K indicates smooth training effect upon repeated field cycling, in accordance with our observation.
109 - P. Song , L. Ma , G. K. Li 2018
Up to now, for the conventional exchange bias (EB) systems there has been one pinning phase and one pinned phase, and the pinning and pinned phases are inherent to the material and do not mutually transform into each other. Interestingly, we show her e that EB is observed in a special system (Fe2O3)0.1(FeTiO3)0.9 (HI9) different from the conventional EB system. Neutron powder diffraction and magnetic measurement confirm that for HI9: i) two types of short range antiferromagnetic ordering coexist, ii) there are two pinning phases and one pinned phase, iii) the pinned phase is not intrinsic to the structure but can be dynamically produced from the pinning phase with the help of an external magnetic field. Consequently, two anomalous EB behaviors are observed: i) both the coercivity (HC) and the exchange bias field (HE) simultaneously decrease to zero at 30 K, ii) for a high cooling field (Hcool) HE decreases logarithmically with increasing Hcool. Using Arrott plots it is confirmed that the first order magnetic phase transformation (FOMPT) from the AFM Fe2+ to ferromagnetic (FM) Fe2+ and the second order magnetic phase transformation (SOMPT) for the process whereby the FM Fe2+ aligns with the external field direction coexist in HI-9. The Morin transition and FOMPT cause the anomalous EB behaviors. This work may provide fresh ideas for research into EB behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا