ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial proximity effects on the excitation of Sheath RF Voltages by evanescent Slow Waves in the Ion Cyclotron Range of Frequencies

60   0   0.0 ( 0 )
 نشر من قبل Laurent Colas
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E// emitted by Ion Cyclotron (IC) wave launchers. We use a simple model of Slow Wave (SW) evanescence coupled with Direct Current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a wide sheaths asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF+DC model becomes linear: the sheath oscillating voltage VRF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |VRF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |VRF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |VRF| are found smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E// emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-symmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.



قيم البحث

اقرأ أيضاً

Aims. To determine the effect of the Hall term in the generalised Ohms law on the damping and phase mixing of Alfven waves in the ion cyclotron range of frequencies in uniform and non-uniform equilibrium plasmas. Methods. Wave damping in a uniform pl asma is treated analytically, whilst a Lagrangian remap code (Lare2d) is used to study Hall effects on damping and phase mixing in the presence of an equilibrium density gradient. Results. The magnetic energy associated with an initially Gaussian field perturbation in a uniform resistive plasma is shown to decay algebraically at a rate that is unaffected by the Hall term to leading order in k^2di^2 where k is wavenumber and di is ion skin depth. A similar algebraic decay law applies to whistler perturbations in the limit k^2di^2>>1. In a non-uniform plasma it is found that the spatially-integrated damping rate due to phase mixing is lower in Hall MHD than it is in MHD, but the reduction in the damping rate, which can be attributed to the effects of wave dispersion, tends to zero in both the weak and strong phase mixing limits.
The boundary sheath of a low temperature plasma comprises typically only a small fraction of its volume but is responsible for many aspects of the macroscopic behavior. A thorough understanding of the sheath dynamics is therefore of theoretical and p ractical importance. This work focusses on the so-called algebraic approach which strives to describe the electrical behavior of RF modulated boundary sheaths in closed analytical form, i.e., without the need to solve differential equations. A mathematically simple, analytical expression for the charge-voltage relation of a sheath is presented which holds for all excitation wave forms and amplitudes and covers all regimes from the collision-less motion at low gas pressure to the collision dominated motion at gas high pressure. A comparison with the results of self-consistent particle-in-cell simulations is also presented.
Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-am plitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number $ klambda_{De} $ increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ions thermal velocity) increases obviously in the region of $ T_i/T_e < 0.2 $ in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with $klambda_{De}$ increasing. When $klambda_{De}$ is not large, such as $klambda_{De}=0.1, 0.3, 0.5$, the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when $klambda_{De}$ is large, such as $klambda_{De}=0.7$, the linear frequency can not be applied to exciting the nonlinear IAW, while the frequency calculated by the dispersion relation with no damping can be applied to exciting the nonlinear IAW.
We present the first 3D particle-in-cell simulations of laser driven sheath-based ion acceleration in a kilotesla-level applied magnetic field. The applied magnetic field creates two distinct stages in the acceleration process associated with the tim e-evolving magnetization of the hot electron sheath and results in a focusing, magnetic field-directed ion source of multiple species with strongly enhanced energy and number. The benefits of adding the magnetic field are downplayed in 2D simulations, which strongly suggests the feasibility of observing magnetic field effects under experimentally relevant conditions.
The Numerical Advanced Model of Electron Cyclotron Resonance Ion Source (NAM-ECRIS) is applied for studies of the physical processes in the source. Solutions of separately operating electron and ion modules of NAM-ECRIS are matched in iterative way s uch as to obtain the spatial distributions of the plasma density and of the plasma potential. Results reveal the complicated profiles with the maximized plasma density close to the ECR surface and on the source axis. The ion-trapping potential dips are calculated to be on the level of ~(0.01-0.05) V being located at the plasma density maxima. The highly charged ions are also localized close to the ECR surface. The biased electrode effect is due to an electron string along the source axis formed by reflection of electrons from the biased electrode and the extraction aperture. The string makes profiles of the highly charged ions more peaked on the source axis, thus increasing the extracted ion currents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا