ﻻ يوجد ملخص باللغة العربية
We present linear polarization measurements of nearby FGK dwarfs to parts-per-million (ppm) precision. Before making any allowance for interstellar polarization, we found that the active stars within the sample have a mean polarization of 28.5 +/- 2.2 ppm while the inactive stars have a mean of 9.6 +/- 1.5 ppm. Amongst inactive stars we initially found no difference between debris disk host stars (9.1 +/- 2.5 ppm) and the other FGK dwarfs (9.9 +/- 1.9 ppm). We develop a model for the magnitude and direction of interstellar polarization for nearby stars. When we correct the observations for the estimated interstellar polarization we obtain 23.0 +/-2.2 ppm for the active stars, 7.8 +/- 2.9 ppm for the inactive debris disk host stars and 2.9 +/- 1.9 ppm for the other inactive stars. The data indicates that whilst some debris disk host stars are intrinsically polarized most inactive FGK dwarfs have negligible intrinsic polarization, but that active dwarfs have intrinsic polarization at levels ranging up to ~45 ppm. We briefly consider a number of mechanisms, and suggest differential saturation of spectral lines in the presence of magnetic fields is the best able to explain the polarization seen in active dwarfs. The results have implications for current attempts to detect polarized reflected light from hot Jupiters by looking at the combined light of the star and planet.
The aim of the present study is to determine the Li abundances for a large set of the FGK dwarfs and to analyse the connections between the Li content, stellar parameters, and activity. Atmospheric parameters, rotational velocities and Li abundances
We report on near-infrared J- and H-band linear polarimetric photometry of eight ultracool dwarfs (two late-M, five L0-L7.5, and one T2.5) with known evidence for photometric variability due to dust clouds, anomalous red infrared colors, or low-gravi
We present the first linear polarimetric survey of white dwarfs (WDs). Our sample consists of WDs of DA and DC spectral types in the SDSS r magnitude range from 13 to 17. We performed polarimetric observations with the RoboPol polarimeter attached to
Linear polarization can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases withthe degree of oblateness, which is inversely proportional to the surface gr
We performed extensive tests of the accuracy of atmospheric parameter determination for FGK stars based on the spectrum fitting procedure Spectroscopy Made Easy (SME). Our stellar sample consists of 13 objects, including the Sun, in the temperature r