ترغب بنشر مسار تعليمي؟ اضغط هنا

Secondary positrons and electrons measured by PAMELA experiment

131   0   0.0 ( 0 )
 نشر من قبل Vladimir Mikhailov V
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V.V. Mikhailov




اسأل ChatGPT حول البحث

We present a measurements of electron and positron fluxes below the geomagnetic cutoff rigidity in wide energy range from 50 MeV to several GeV by the PAMELA magnetic spectrometer. The instrument was launched on June 15th 2006 on-board the Resurs-DK satellite on low orbit with 70 degrees inclination and altitude between 350 and 600 km. The procedure of trajectories calculations in the geomagnetic field separates stably trapped and albedo components produced in interactions of cosmic ray protons with the residual atmosphere from galactic cosmic rays. Features of spatial distributions of secondary electrons and positrons in the near Earth space, including the South Atlantic Anomaly, were investigated.



قيم البحث

اقرأ أيضاً

The PAMELA detector was launched on board of the Russian Resurs-DK1 satellite on June 15, 2006. Data collected during the first four years have been used to search for large-scale anisotropies in the arrival directions of cosmic-ray positrons. The PA MELA experiment allows for a full sky investigation, with sensitivity to global anisotropies in any angular window of the celestial sphere. Data samples of positrons in the rigidity range 10 GV $leq$ R $leq$ 200 GV were analyzed. This article discusses the method and the results of the search for possible local sources through analysis of anisotropy in positron data compared to the proton background. The resulting distributions of arrival directions are found to be isotropic. Starting from the angular power spectrum, a dipole anisotropy upper limit delta = 0.166 at 95% C.L. is determined. Additional search is carried out around the Sun. No evidence of an excess correlated with that direction was found.
We present a precise measurement of downward-going albedo proton fluxes for kinetic energy above $sim$ 70 MeV performed by the PAMELA experiment at an altitude between 350 and 610 km. On the basis of a trajectory tracing simulation, the analyzed prot ons were classified into quasi-trapped, concentrating in the magnetic equatorial region, and un-trapped spreading over all latitudes, including both short-lived (precipitating) and long-lived (pseudo-trapped) components. In addition, features of the penumbra region around the geomagnetic cutoff were investigated in detail. PAMELA results significantly improve the characterization of the high energy albedo proton populations at low Earth orbits.
The PAMELA satellite experiment has measured the cosmic-ray positron fraction between 1.5 GeV and 100 GeV. The need to reliably discriminate between the positron signal and proton background has required the development of an ad hoc analysis procedur e. In this paper, a method for positron identification is described and its stability and capability to yield a correct background estimate is shown. The analysis includes new experimental data, the application of three different fitting techniques for the background sample and an estimate of systematic uncertainties due to possible inaccuracies in the background selection. The new experimental results confirm both solar modulation effects on cosmic-rays with low rigidities and an anomalous positron abundance above 10 GeV.
Precision measurements of the electron component in the cosmic radiation provide important information about the origin and propagation of cosmic rays in the Galaxy. Here we present new results regarding negatively charged electrons between 1 and 625 GeV performed by the satellite-borne experiment PAMELA. This is the first time that cosmic-ray electrons have been identified above 50 GeV. The electron spectrum can be described with a single power law energy dependence with spectral index -3.18 +- 0.05 above the energy region influenced by the solar wind (> 30 GeV). No significant spectral features are observed and the data can be interpreted in terms of conventional diffusive propagation models. However, the data are also consistent with models including new cosmic-ray sources that could explain the rise in the positron fraction.
We report an accurate measurement of the geomagnetically trapped proton fluxes for kinetic energy above > 70 MeV performed by the PAMELA mission at low Earth orbits (350-610 km). Data were analyzed in the frame of the adiabatic theory of charged part icle motion in the geomagnetic field. Flux properties were investigated in detail, providing a full characterization of the particle radiation in the South Atlantic Anomaly region, including locations, energy spectra and pitch angle distributions. PAMELA results significantly improve the description of the Earths radiation environment at low altitudes placing important constraints on the trapping and interaction processes, and can be used to validate current trapped particle radiation models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا