ﻻ يوجد ملخص باللغة العربية
We report an accurate measurement of the geomagnetically trapped proton fluxes for kinetic energy above > 70 MeV performed by the PAMELA mission at low Earth orbits (350-610 km). Data were analyzed in the frame of the adiabatic theory of charged particle motion in the geomagnetic field. Flux properties were investigated in detail, providing a full characterization of the particle radiation in the South Atlantic Anomaly region, including locations, energy spectra and pitch angle distributions. PAMELA results significantly improve the description of the Earths radiation environment at low altitudes placing important constraints on the trapping and interaction processes, and can be used to validate current trapped particle radiation models.
We present a precise measurement of downward-going albedo proton fluxes for kinetic energy above $sim$ 70 MeV performed by the PAMELA experiment at an altitude between 350 and 610 km. On the basis of a trajectory tracing simulation, the analyzed prot
We present a measurements of electron and positron fluxes below the geomagnetic cutoff rigidity in wide energy range from 50 MeV to several GeV by the PAMELA magnetic spectrometer. The instrument was launched on June 15th 2006 on-board the Resurs-DK
Precise measurements of the time-dependent intensity of the low energy ($<50$ GeV) galactic cosmic rays are fundamental to test and improve the models which describe their propagation inside the heliosphere. Especially, data spanning different solar
Precise time-dependent measurements of the Z = 2 component in the cosmic radiation provide crucial information about the propagation of charged particles through the heliosphere. The PAMELA experiment, with its long flight duration (15th June 2006 -
The energy spectra of galactic cosmic rays carry fundamental information regarding their origin and propagation. These spectra, when measured near Earth, are significantly affected by the solar magnetic field. A comprehensive description of the cosmi