ﻻ يوجد ملخص باللغة العربية
As telescopes become larger, into the era of ~40 m Extremely Large Telescopes, the high- resolution vertical profile of the optical turbulence strength is critical for the validation, optimization and operation of optical systems. The velocity of atmospheric optical turbulence is an important parameter for several applications including astronomical adaptive optics systems. Here, we compare the vertical profile of the velocity of the atmospheric wind above La Palma by means of a comparison of Stereo-SCIntillation Detection And Ranging (Stereo- SCIDAR) with the Global Forecast System models and nearby balloon-borne radiosondes. We use these data to validate the automated optical turbulence velocity identification from the Stereo-SCIDAR instrument mounted on the 2.5 m Isaac Newton Telescope, La Palma. By comparing these data we infer that the turbulence velocity and the wind velocity are consistent and that the automated turbulence velocity identification of the Stereo-SCIDAR is precise. The turbulence velocities can be used to increase the sensitivity of the turbulence strength profiles, as weaker turbulence that may be misinterpreted as noise can be detected with a velocity vector. The turbulence velocities can also be used to increase the altitude resolution of a detected layer, as the altitude of the velocity vectors can be identified to a greater precision than the native resolution of the system. We also show examples of complex velocity structure within a turbulent layer caused by wind shear at the interface of atmospheric zones.
Knowledge of the Earths atmospheric optical turbulence is critical for astronomical instrumentation. Not only does it enable performance verification and optimisation of existing systems but it is required for the design of future instruments. As a m
A characterization of the optical turbulence vertical distribution and all the main integrated astroclimatic parameters derived from the CN2 and the wind speed profiles above Mt. Graham is presented. The statistic includes measurements related to 43
Adaptive optics (AO) systems using tomographic estimation of three-dimensional structure of atmospheric turbulence requires vertical atmospheric turbulence profile, which describes turbulence strength as a function of altitude as a prior information.
We present the largest database so far of atmospheric optical-turbulence profiles (197035 individual CN2(h)) for an astronomical site, the Roque de los Muchachos Observatory (La Palma, Spain). This C2 (h) database was obtained through generalized-SCI
An international consortium is presently constructing a beamformer for the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile that will be available as a facility instrument. The beamformer will aggregate the entire collecting area of the a