ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Angular-Resolution and High-Sensitivity Science Enabled by Beamformed ALMA

131   0   0.0 ( 0 )
 نشر من قبل Vincent L. Fish
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An international consortium is presently constructing a beamformer for the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile that will be available as a facility instrument. The beamformer will aggregate the entire collecting area of the array into a single, very large aperture. The extraordinary sensitivity of phased ALMA, combined with the extremely fine angular resolution available on baselines to the Northern Hemisphere, will enable transformational new very long baseline interferometry (VLBI) observations in Bands 6 and 7 (1.3 and 0.8 mm) and provide substantial improvements to existing VLBI arrays in Bands 1 and 3 (7 and 3 mm). The ALMA beamformer will have impact on a variety of scientific topics, including accretion and outflow processes around black holes in active galactic nuclei (AGN), tests of general relativity near black holes, jet launch and collimation from AGN and microquasars, pulsar and magnetar emission processes, the chemical history of the universe and the evolution of fundamental constants across cosmic time, maser science, and astrometry.



قيم البحث

اقرأ أيضاً

The capability of maintaining two satellites in precise relative position, stable in a celestial coordinate system, would enable major advances in a number of scientific disciplines and with a variety of types of instrumentation. The common requireme nt is for formation flying of two spacecraft with the direction of their vector separation in inertial coordinates precisely controlled and accurately determined as a function of time. We consider here the scientific goals that could be achieved with such technology and review some of the proposals that have been made for specific missions. Types of instrumentation that will benefit from the development of this type of formation flying include 1) imaging systems, in which an optical element on one spacecraft forms a distant image recorded by a detector array on the other spacecraft, including telescopes capable of very high angular resolution; 2) systems in which the front spacecraft of a pair carries an occulting disk, allowing very high dynamic range observations of the solar corona and exoplanets; 3) interferometers, another class of instrument that aims at very high angular resolution and which, though usually requiring more than two spacecraft, demands very much the same developments.
Since the very beginning of astronomy the location of objects on the sky has been a fundamental observational quantity that has been taken for granted. While precise two dimensional positional information is easy to obtain for observations in the ele ctromagnetic spectrum, the positional accuracy of current and near future gravitational wave detectors is limited to between tens and hundreds of square degrees, which makes it extremely challenging to identify the host galaxies of gravitational wave events or to confidently detect any electromagnetic counterparts. Gravitational wave observations provide information on source properties and distances that is complementary to the information in any associated electromagnetic emission and that is very hard to obtain in any other way. Observing systems with multiple messengers thus has scientific potential much greater than the sum of its parts. A gravitational wave detector with higher angular resolution would significantly increase the prospects for finding the hosts of gravitational wave sources and triggering a multi-messenger follow-up campaign. An observatory with arcminute precision or better could be realised within the Voyage 2050 programme by creating a large baseline interferometer array in space and would have transformative scientific potential. Precise positional information of standard sirens would enable precision measurements of cosmological parameters and offer new insights on structure formation; a high angular resolution gravitational wave observatory would allow the detection of a stochastic background and resolution of the anisotropies within it; it would also allow the study of accretion processes around black holes; and it would have tremendous potential for tests of modified gravity and the discovery of physics beyond the Standard Model.
119 - G. A. Fuller 2016
We discuss the science drivers for ALMA Band 2 which spans the frequency range from 67 to 90 GHz. The key science in this frequency range are the study of the deuterated molecules in cold, dense, quiescent gas and the study of redshifted emission fro m galaxies in CO and other species. However, Band 2 has a range of other applications which are also presented. The science enabled by a single receiver system which would combine ALMA Bands 2 and 3 covering the frequency range 67 to 116 GHz, as well as the possible doubling of the IF bandwidth of ALMA to 16 GHz, are also considered.
Deuterium fractionation is dependent on various physical and chemical parameters. Thus, the formation location and thermal history of material in the solar system is often studied by measuring its D/H ratio. This requires knowledge about the deuterat ion processes operating during the planet formation era. We aim to study these processes by radially resolving the DCN/HCN (at 0.3 resolution) and N$_2$D$^+$/N$_2$H$^+$ (0.3 to 0.9) column density ratios toward the five protoplanetary disks observed by the Molecules with ALMA at Planet-forming scales (MAPS) Large Program. DCN is detected in all five sources, with one newly reported detection. N$_2$D$^+$ is detected in four sources, two of which are newly reported detections. We derive column density profiles that allow us to study the spatial variation of the DCN/HCN and N$_2$D$^+$/N$_2$H$^+$ ratios at high resolution. DCN/HCN varies considerably for different parts of the disks, ranging from $10^{-3}$ to $10^{-1}$. In particular, the inner disk regions generally show significantly lower HCN deuteration compared with the outer disk. In addition, our analysis confirms that two deuterium fractionation channels are active, which can alter the D/H ratio within the pool of organic molecules. N$_2$D$^+$ is found in the cold outer regions beyond $sim$50 au, with N$_2$D$^+$/N$_2$H$^+$ ranging between $10^{-2}$ and 1 across the disk sample. This is consistent with the theoretical expectation that N$_2$H$^+$ deuteration proceeds via the low-temperature channel only. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
75 - F. Nicastro 2019
Metals form an essential part of the Universe at all scales. Without metals we would not exist, and the Cosmos would look completely different. Metals are primarily born through nuclear processes in stars. They leave their cradles through winds or ex plosions, and then start their journey through space. This can lead them in and out of astronomical objects on all scales, ranging from comets, planets, stars, entire galaxies, groups and clusters of galaxies to the largest structures of the Universe. Their wanderings are fundamental in determining how these objects, and the entire universe, evolve. In addition, their bare presence can be used to trace what these structures look like. The scope of this paper is to highlight the most important open astrophysical problems that will be central in the next decades and for which a deep understanding of the Universe-wandering metals, their physical and kinematical states and their chemical composition represents the only viable solution. The majority of these studies can only be efficiently performed through High Resolution Spectroscopy in the soft X-ray band.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا